
DATA STRUCTURES 

(CBCGS DEC 2017) 

 

Q1. a) Explain ADT. List the Linear and Non-Linear data structures with  example.           (5)                                                                                                         

Solution: 

An ADT is a specified mathematical entity. It has a specific interface. A collection of 

signature of operations that can be involved on an instance. 

It is a kind of abstraction which means the user does not know about the operations taking 

place at the backend. 

Linear data structures: 

Elements are arranged in a linear  fashion. Types of linear data structures are: 

->Lists 

0 1 2 3     n-1 

 

->stack 

 

                                  

                             top 

->queue 

0 1 2 3 4 5 6 7 ………………….. 

 

Non-linear data structures: 

Every data element can have many successors and predecessors. Types of non-linear data 

structures: 

->Tree 

 

 

 

 

 

 
 

4 

3 
2 

1 



 

 

 

 

 

 

->Graph 

                        

 

 

 

 

->table 

10 25 30 7 55 

5 5 2 10 2 

2 50 10 25 10 

 

Q1. b) Explain B tree and B+ tree.                                                                                                  (5) 

Solution: 

I.B tree 

->A B-tree is a method of placing and locating files (called records or keys) in a database. 

->The B-tree algorithm minimizes the number of times a medium must be accessed to 

locate a desired record, thereby speeding up the process. 

->Properties: 

1. All the leaf nodes must be at same level. 

2 . All nodes except root must have at least [m/2]-1 keys and maximum of m-1 keys. 

3. All non leaf nodes except root (i.e. all internal nodes) must have at least m/2 children. 

4.If the root node is a non leaf node, then it must have at least 2 children. 

2 

5 6 

3 9 

0 

9 
1

0

0

8 

5 

8 

https://searchsqlserver.techtarget.com/definition/database
https://whatis.techtarget.com/definition/algorithm


5.A non leaf node with n-1 keys must have n number of children. 

6.All the key values within a node must be in Ascending Order. 

->example: 

 

 

 

 

 

 

 

 

II.B+ Tree 

->A B+ tree is a data structure often used in the implementation of database indexes. 

->Each node of the tree contains an ordered list of keys and pointers to lower level 
nodes in the tree. These pointers can be thought of as being between each of the keys. 

       ->Properties: 

1. The root node points to at least two nodes. 

2. All non-root nodes are at least half full. 

3. For a tree of order m, all internal nodes have m-1 keys and m pointers. 

4. A B+-Tree grows upwards. 

5. A B+-Tree is balanced. 

6. Sibling pointers allow sequential searching. 

->example: 

 

 

 

 

 

Q1. c) Write a program to implement Binary Search on sorted set of integers.                (10)  

Solution: 

20 

7,14 
23,35,44 

1,5 18,19 
21 36,40 50 

20,  70 

1,2,8,19 25,30,50,55 75,85,90,100 



Code: 

#include<stdio.h> 

int n; 

int binary(int a[],int n,int x) 

{ 

   int low=0,high=n-1,mid; 

   while(low<=high) 

   { 

       mid=(low+high)/2; 

      if(x==a[mid]) 

      return(mid); 

      

 else if(x<a[mid]) 

      high=mid-1; 

      else 

      low=mid+1; 

   } 

   return(-1); 

} 

int main() 

{ 

   int y,i,j; 

   printf("enter the size of the array:"); 

   scanf("%d",&n); 

   int a[n]; 

   printf("entered sorted list of array:"); 

   for(i=0;i<n;i++) 

   { 

      scanf("%d",&a[i]); 



   } 

   printf("enter the number to be searched:"); 

   scanf("%d",&y); 

   j=binary(a,n,y); 

   i=j; 

   if(j==-1) 

    

   printf("element not found"); 

    

else 

   { 

      printf("\n %d occurred at position=%d \n",y,i+1); 

   } 

   return 0; 

} 

Output: 

enter the size of the array:5 

entered sorted list of array:1 2 5 8 9 

enter the number to be searched:5 

5 occurred at position=3 

 

Q2. a) Write a program to convert infix expression into postfix expression.                  (10) 

Solution: 

Code: 

#include<stdio.h> 

#include<ctype.h> 

#include<string.h> 

#include<stdlib.h> 

#define size 50 



int top=-1; 

char s[size]; 

void push(char ch) 

{ 

 s[++top]=ch; 

} 

char pop() 

{ 

 return(s[top--]); 

} 

int prec(char ch) 

{ 

     switch(ch) 

  { 

   case '#':return 0; 

   break; 

   case '(':return 1; 

   break; 

   case '-': case'+':return 2; 

   break; 

   case '/': case '*': return 3; 

   break; 

  }  

} 

int main() 

{ 

 char ch,elem,ix[50],px[50]; 

 int i=0,k=0; 

 push('#'); 



 printf("enter infix expression:"); 

 gets(ix); 

 while((ch=ix[i++])!='\0') 

 { 

  if(isalnum(ch)) 

  px[k++]=ch; 

  else if (ch=='(') 

  push(ch); 

  else if(ch==')') 

  { 

   while(s[top]!='(') 

   px[k++]=pop(); 

   elem=pop(); 

  } 

  else 

  { 

   if(s[top]=='#') 

   push(ch); 

   else if( s[top]=='(') 

   push(ch); 

   else if(prec(ch)>prec(s[top])) 

   push(ch); 

   else 

   px[k++]=pop(); 

  } 

 } 

while(s[top]!='#') 

 px[k++]=pop(); 

 px[k]='\0'; 



 printf("postfix expression :"); 

 puts(px); 

 return 0; 

} 

Output: 

enter infix expression:a+b*(c+d) 

postfix expression :abcd+*+ 

 

Q2. b) Explain Huffman encoding   with an example.                                                              (10) 

Solution: 

-> Huffman encoding is a concept which is developed by David Huffman. 

-> The original data can be perfectly reconstructed from compressed data. 

-> It is mainly used in instant compression format, Jpack, png, mp3 and gzip. 

-> Algorithm 

 Sort given symbol in increasing order of frequency then create a binary tree using following 

steps:- 

1.From the frequency table select 2 symbols s1 and s2 with minimum frequency f1 and f2. 

Create a node for s1 and s2.  

2.Combine the nodes s1 and s2 and create a new symbol s12. Create a node for s12. 

3.Remove s1 and s2 from frequency table and insert s1 keeping the frequency table sorted. 

4.Repeat step 1 and 3 till only one symbol is left in frequency table. 

-> Example: 

a m x y p 
85 20 5 12 18 

 

x y p m a 

5 12 18 20 85 

 

 

 

 

xy p m a 

17 18 20 85 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                  

 

 

 

 

 

 

m xyp a 

20 35 85 

xypm a 
55 85 

xy(17) 

 

 

 
x (5) y (12) 

xyp  (35) 

xy (17) 

x (5) y (12) 

p (18) 

xyp  (35) 

xy (17) 

x (5) y (12) 

p (18) 

xymp 

(55) 

m (20) 



 

 

 

                                              0                                                                  1 

 

 

         0                                                                          1 

 

                                                                                                                                                  

                                          0                                                        1 

 

                              0                                              1 

 

 

 

 

 

 

 

No. of bits required= 20 x2 + 5 x 4 + 12 x 4 +18 x 3 +85 x 1=247 bits 

 

Q3. a) Write a program to implement Doubly Linked List. Perform the following 

operations: 

(i) Insert a node in the beginning 

(ii) Insert a node in the end 

(iii) Delete a node from the end 

(iv) Display a list                                                                                                                        (10) 

Solution: 

Code: 

#include <stdio.h> 

alphabets frequency bits No. of bits 

m 20 00 2 
x 5 0100 4 

y 12 0101 4 

p 18 011 3 

a 85 1 1 

xyp  (35) 

xy (17) 

x (5) y (12) 

p (18) 

xymp 

(55) 

m (20) 

xympa (140) 

a(85) 

 

 (85) 



  #include <stdlib.h> 

 

  struct node { 

        int data; 

        struct node *next, *prev; 

  }; 

 

  struct node *head = NULL, *tail = NULL; 

 

  struct node * createNode(int data) { 

        struct node *newnode; 

        newnode = (struct node *)malloc(sizeof (struct node)); 

        newnode->data = data; 

        newnode->next = NULL; 

        newnode->prev = NULL; 

        return (newnode); 

  } 

 

  void createDummies() { 

        head = (struct node *)malloc(sizeof (struct node)); 

        tail = (struct node *)malloc(sizeof (struct node)); 

        head->data = tail->data = 0; 

        head->next = tail; 

        tail->prev = head; 

        head->prev = tail->next = NULL; 

  } 

void insertAtStart(int data) 

{ 

        struct node *newnode = createNode(data); 



        newnode->next = head->next; 

        newnode->prev = head; 

        head->next->prev = newnode; 

        head->next = newnode; 

        nodeCount++; 

  } 

  void insertAtEnd(int data) 

 { 

        struct node *newnode = createNode(data); 

        newnode->next = tail; 

        newnode->prev = tail->prev; 

        tail->prev->next = newnode; 

        tail->prev = newnode; 

        nodeCount++; 

  } 

 

 

void deleteend() 

{ 

 struct node *ptr=tail; 

 tail->prev->next=tail->next; 

 tail=tail->prev; 

 

 free(ptr);  

} 

 

void display() 

{ 

 struct node *ptr; 



 ptr=head->next; 

 while (ptr!=tail) 

 { 

  printf("%d \t ",ptr->data); 

  ptr=ptr->next; 

 } 

} 

  int main() 

   { 

        int data, ch, pos; 

        createDummies(); 

        while (1)  

  { 

                printf("\n 1. Insert at start\n 2.Insert at end\n 3.delete at end\n 4. Exit\n"); 

                printf("Enter your choice:"); 

                scanf("%d", &ch); 

                switch (ch) { 

                 case 1: printf("Enter your data to  insert at start:"); 

                                scanf("%d", &data); 

                                insertAtStart(data); 

                                display(); 

                                break; 

                        case 2: 

                                printf("Enter your data to insert:"); 

                                scanf("%d", &data); 

                                insertAtEnd(data); 

                                display(); 

                                break; 

                        case 3: deleteend(); 



                                display(); 

                                break; 

                        case 4: 

                                exit(0); 

                        default: 

                                printf("U have entered wrong option\n"); 

                                break; 

                } 

        } 

        return 0; 

  } 

Output: 

1. Insert at start 

 2.Insert at end 

 3.delete at end 

 4. Exit 

Enter your choice:1 

Enter your data to  insert at start:2 

2 

 1. Insert at start 

 2.Insert at end 

 3.delete at end 

 4. Exit 

Enter your choice:1 

Enter your data to insert at start:3 

3        2 

 1. Insert at start 

 2.Insert at end 

 3.delete at end 



 

 4. Exit 

Enter your choice:2 

Enter your data to insert:5 

3        2       5 

 1. Insert at start 

 2.Insert at end 

 3.delete at end 

 4. Exit 

Enter your choice:3 

3        2 

 1. Insert at start 

 2.Insert at end 

 3.delete at end 

 4. Exit 

Enter your choice:4                  

 

Q3. b) Explain Topological sorting with example.                                                              (10) 

Solution: 

->Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such 

that for every directed edge uv, vertex u comes before v in the ordering. Topological Sorting 

for a graph is not possible if the graph is not a DAG. 

->For example, a topological sorting of the following graph is “5 4 2 3 1 0”.  

->There can be more than one topological sorting for a graph. For example, another 
topological sorting of the following graph is “4 5 2 3 1 0”. The first vertex in topological 
sorting is always a vertex with in-degree as 0 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

-> we use a temporary stack. We don’t print the vertex immediately, we first recursively call 

topological sorting for all its adjacent vertices, then push it to a stack. 

-> Finally, print contents of stack. A vertex is pushed to stack only when all of its adjacent 

vertices (and their adjacent vertices and so on) are already in stack. 

 

Q4. a) Write a program to implement Quick sort. Show the steps to sort the given 

numbers:  25,13,7,34,56,23,13,96,14,2                                                                                      (10) 

Solution: 

Code: 

#include<stdio.h> 
#include<stdlib.h> 
 
void quick(int a[40],int first,int last) 
{ 
   int pivot,j,i,temp; 
   if(first<last) 
   { 
      pivot=first; 
      i=first; 
      j=last; 
       
      while(i<j) 
      { 
         while(a[i]<=a[pivot] && i<last) 
         i++; 
          

5 4 

0 

2 
1 

3 



         while(a[j]>a[pivot]) 
         j--; 
          
         if(i<j) 
         { 
           temp=a[i]; 
           a[i]=a[j]; 
           a[j]=temp; 
         } 
      } 
      temp=a[pivot]; 
      a[pivot]=a[j]; 
      a[j]=temp; 
       
      quick(a,first,j-1); 
      quick(a,j+1,last); 
   } 
} 
  void main() 
{ 
   int a[20],n,i; 
   printf("enter the no. of elements:"); 
   scanf("%d",&n); 
    
   printf("enter the elements:"); 
   for(i=0;i<n;i++) 
   { 
      scanf("%d",&a[i]); 
   } 
    
   quick(a,0,n-1); 
   printf("sorted elements are:"); 
   for(i=0;i<n;i++) 
   { 
     printf("%d \t",a[i]); 
   } 
} 

Output: 

enter the no. of elements:10 

enter the elements:25 13 7 34 56 23 13 96 14 2 

sorted elements are:2   7       13      13      14      23      25      34      56      96 

steps: 



25 13 7 34 56 23 13 96 14 2 

                                                i                                                                                    j 

Pivot 

25 13 7 2 56 23 13 96 14 34 

                                                           I                                                          j      

25 13 7 2 14 23 13 96 56 34 

                                                                                        j              i                        

13 13 7 2 14 23 25 96 56 34 

 

13 13 7 2 14 23                                       96 56 34 

                           j      I                                                                                                 i   j  

pivot                                                                                                         pivot 

2 13 7 13 14 23  34 56 96 

                                                                                                         sorted 

 

        j    i                        sorted 

pivot 

13 7 

                 j   i 

       pivot 

7 13 

        sorted 

final sorted list is: 

2 7 13 13 14 23 25 34 56 96 

 

Q4. b) Write a program to implement linear queue using array.                                      (10) 

Solution: 

Code: 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

#define MAX 50 

2 13 7  14 23 



void insert(); 

void delet(); 

void display(); 

int queue[MAX],rear=-1,front=-1,item; 

int main() 

{ 

     int ch; 

     do 

     { 

         printf("\n\n1.Insert\n2 Delete\n3.Display\n4.Exit\n\n"); 

         printf("Enter your choice\n"); 

         scanf("%d",&ch); 

         switch(ch) 

         { 

                  case 1: 

                       insert(); 

                       break; 

             

                  case 2: 

                       delet(); 

                

                       break; 

                  case 3: 

                       display(); 

                     break; 

                     case 4: 

                      exit(0); 

                      default: 

                          printf("Invalid choice, Please try again\n");                  



                           } 

  }while(1);  

            getch(); 

} 

void insert() 

{ 

   if(rear==MAX-1) // condition for Queue Full 

      printf("Queue is Full\n");  

   else 

   { 

   printf("\n\n Enter item\n"); 

   scanf("%d",&item); 

    

                     if(rear == -1 && front ==-1  ) // is Queue Empty 

                     { 

                     rear=0; 

                     front=0;     

                     }   

                     else              // otherwise 

                     rear++; 

           queue[rear]=item; // adding element to Queue 

        printf("\n\n Item Inseted :%d",item); 

   }     

   } // end insert 

void delet() 

{ 

     if(front==-1) // Queue is empty 

         printf( "\nQueue is empty\n"); 

        else //  it has element  



     { 

         item = queue[front]; 

            if(front==rear) // the element is the last element 

         { 

         front = -1 ; 

         rear=-1;                

         }     

         else  // not the last element 

         front++; 

     printf("\n\n Item deleted: %d ",item); 

     } 

}  

void display() 

{ 

      int i; 

     if( front ==-1) 

         printf("\nQueue is empty\n"); 

     else 

     {    

         printf("\n\n"); 

          

         for(i = front; i<=rear ; i++) 

         printf("    %d",queue[i]); 

     } 

}  

Output: 

1.Insert 

2 Delete 

3.Display 



 

4.Exit 

Enter your choice 

1 

Enter item 

12 

 Item Inserted :12 

1.Insert 

2 Delete 

3.Display 

4.Exit 

Enter your choice 

1 

 Enter item 

55 

 Item Inserted :55 

 

1.Insert 

2 Delete 

3.Display 

4.Exit 

Enter your choice 

1 

Enter item 

88 

Item Inserted :88 

1.Insert 

2 Delete 

3.Display 



 

4.Exit 

Enter your choice 

1 

 Enter item 

66 

 Item Inserted :66 

1.Insert 

2 Delete 

3.Display 

4.Exit 

Enter your choice 

3 

12    55    88    66 

1.Insert 

2 Delete 

3.Display 

4.Exit 

Enter your choice 

2 

Item deleted: 12 

1.Insert 

2 Delete 

3.Display 

4.Exit 

Enter your choice 

3 

 55    88    66 

1.Insert 



 

2 Delete 

3.Display 

4.Exit 

Enter your choice 

4 

 

Q5. a) Write a program to implement STACK using Linked list. What are the advantages 

linked list over array?                                                                                                                  (10) 

Solution: 

Code: 

#include <stdio.h> 

#include <stdlib.h> 

   struct Node 

{ 

    int Data; 

    struct Node *next; 

}*top; 

   void popStack() 

{ 

    struct Node  *var=top; 

 

    if (top==NULL) 

    { 

    printf("\nStack Empty"); 

    } 

    else 

    { 

        top = top->next; 



        free(var); 

         printf("element removed"); 

    }  

} 

   void push(int value) 

{ 

    struct Node *temp; 

 

    temp=(struct Node *)malloc(sizeof(struct Node)); 

 

    temp->Data=value; 

 

    if (top == NULL) 

    { 

         top=temp; 

         top->next=NULL; 

    } 

    else 

    { 

        temp->next=top; 

        top=temp; 

    } 

} 

void display() 

{ 

     struct Node *var=top; 

     if(var!=NULL) 

     {  

          printf("\nElements are as:\n"); 



 

          while(var!=NULL) 

          { 

               printf("\t%d\n",var->Data); 

               var=var->next; 

          }  

     printf("\n"); 

     } 

     else 

     printf("\nStack is Empty"); 

} 

int main() 

{ 

     int c,val; 

     top=NULL; 

     printf(" \n1. Push to stack"); 

     printf(" \n2. Pop from Stack"); 

     printf(" \n3. Display data of Stack"); 

     printf(" \n4. Exit\n"); 

 do 

     { 

          printf(" \nChoose Option: "); 

          scanf("%d",&c); 

           switch(c) 

          { 

               case 1: 

             { 

                printf("\nEnter a value to be to pushed into Stack: "); 

               scanf("%d",&val); 



               push(val); 

               printf("%d added onto stack",val); 

                

               break; 

               } 

               case 2: 

               { 

               popStack(); 

               break; 

               } 

               case 3: 

               { 

               display(); 

               break; 

               } 

               case 4: 

              { 

                     struct Node *temp; 

                       while(top!=NULL) 

               { 

                    temp = top->next; 

                    free(top); 

                    top=temp; 

               } 

               exit(0); 

           }  

           default: 

               { 

               printf("\n  Wrong choice."); 



               } 

         } 

    }while(c!=4); 

} 

Output: 

1. Push to stack 

2. Pop from Stack 

3. Display data of Stack 

4. Exit 

Choose Option: 1 

Enter a value to be to pushed into Stack: 10 

10 added onto stack 

Choose Option: 1 

 Enter a value to be to pushed into Stack: 20 

20 added onto stack 

Choose Option: 1 

Enter a value to be to pushed into Stack: 30 

30 added onto stack 

Choose Option: 1 

Enter a value to be to pushed into Stack: 11 

11 added onto stack 

Choose Option: 3 

Elements are as: 

        11 

        30 

        20 

        10 

Choose Option: 2 

element removed 



 

Choose Option: 3 

Elements are as: 

        30 

        20 

        10 

Choose Option: 4 

Advantages of linked list over array: 

1. There is no need to specify the size for linked list as it can grow and shrink during 

execution. 

2. Insertion and deletion of an element is easier, faster and efficient. 

3. It involves dynamic allocation of memory. 

4. Memory utilization is efficient.  

 

Q5. b) Write a program to implement Binary Search Tree (BST), Show BST for the 

following inputs: 10,5,4,12,15,11,3                                                                                         (10) 

Solution: 

Code: 

#include<stdio.h> 

#include<stdlib.h> 

typedef struct node 

{ 

  int data; 

  struct node *left; 

  struct node *right; 

}node; 

node *insert(node *t,int key) 

{ 

  if(t==NULL) 

  {  



    t=(node *)(malloc(sizeof(node))); 

    t->data=key; 

    t->left=NULL; 

    t->right=NULL; 

  } 

  else 

  {   

    if(key>t->data) 

    t->right=insert(t->right,key); 

    else 

    t->left=insert(t->left,key); 

  } 

  return(t); 

} 

node *search(node *t,int key) 

{ 

  if(t==NULL) 

  return(NULL); 

  else if(t->data==key) 

  return(t); 

   

else if(key>t->data) 

  return(search(t->right,key)); 

  else 

  return(search(t->left,key)); 

} 

node *max(node *t) 

{  

  if(t==NULL) 



  return(NULL); 

  while(t->right!=NULL) 

  t=t->right; 

  return(t); 

} 

node *min(node *t) 

{ 

  if(t==NULL) 

  return(NULL); 

  while(t->left!=NULL) 

  t=t->left; 

  return(t); 

} 

void preorder(node *temp) 

{ 

  if(temp!=NULL) 

  {  

   

  printf("\n \n data: %d",temp->data); 

    preorder(temp->left); 

    preorder(temp->right); 

  } 

   

} 

void postorder (node *temp) 

{ 

   if(temp!=NULL) 

   { 

     postorder(temp->left); 



     postorder(temp->right); 

     printf("\n \n data: %d",temp->data); 

   } 

} 

void inorder(node *temp) 

{ 

  if(temp!=NULL) 

   { 

     postorder(temp->left); 

     printf("\n \n data: %d",temp->data); 

     postorder(temp->right);  

   } 

} 

int main() 

{ 

  struct node *root=NULL; 

  struct node *temp=NULL; 

  int c,key; 

 do 

  { 

    printf("\n 1.insert node \n 2.search \n 3.maximum number \n 4.minimum number \n  

5.display in inorder format \n 6.display in postorfer format \n 7.display in preorder format 

\n 8.exit \n"); 

   printf("enter your choice:"); 

   scanf("%d",&c); 

   switch(c) 

   { 

     case 1:printf("enter data:"); 

            scanf("%d",&key); 

            if(root==NULL) 



            root=insert(root,key); 

            else 

            temp=insert(root,key); 

            break; 

     case 2:printf("enter key:"); 

            scanf("%d",&key); 

            temp=search(root,key); 

            if(temp!=NULL) 

            printf("%d found",key); 

            else 

            printf("%d not found",key); 

     break; 

     case 3:temp=max(root); 

            printf("max=%d",temp->data); 

     break; 

     case 4:temp=min(root); 

            printf("min=%d",temp->data); 

     break; 

     case 5:inorder(root); 

     break; 

     case 6:postorder(root); 

     break; 

     case 7:preorder(root); 

     break; 

   } 

  }while(c!=8); 

  return 0; 

} 

 



 Output: 

1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

 5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:1 

enter data:10 

1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:1 

enter data:55 

 1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 



8.exit 

enter your choice:1 

enter data:7 

1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:2 

enter key:7 

7 found 

 1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:3 

max=55 

1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  



 5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:4 

min=7 

 1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:5 

data: 7 

data: 10 

data: 55 

 1.insert node 

 2.search 

 3.maximum number 

4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:6 

data: 7 

 



data: 55 

 data: 10 

 1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

  5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:7 

data: 10 

data: 7 

data: 55 

 1.insert node 

 2.search 

 3.maximum number 

 4.minimum number 

5.display in inorder format 

 6.display in postorfer format 

 7.display in preorder format 

 8.exit 

enter your choice:8 

 

Q6.  Write Short notes on(any two) : 

 (a)AVL Tree                                                                                                                                 (10) 

Solution: 

->An AVL tree is a height balance tree. These trees are binary search trees in which the 

heights of two siblings are not permitted to differ by more than one. 



->Searching time in a binary search tree is O(h) where h is the height of the tree. For 

efficient searching it is necessary that the height should be kept minimum. 

-> A full binary search tree with n nodes will have a height of     O(log n). In practice, it is 

very difficult to control the height of a BST. It lies between O(n) to O(log n). An AVL tree is 

a close approximation of full binary search tree. 

->The balance factor of a node in a AVL tree could be -1, 0 or 1. 

1. 0 indicates that the left and right subtrees are equal.  

2. +1 means the height of the left subtree is one more than the height of the right 

subtree.  

3. -1 indicates that the height of the right subtree is one more than the height of the left 

subtree.   

-> 

Type of nodes Rotation 

Left left Right 
Right right Left 
Right left i. right 

ii. left 
Left right i.left 

ii. right 

 

->eg: 44,17,32,78,50,88,48,62,54 

 

     0 

 

                                              +2                                               0 

 

-1 LR 

 

                                                                               0                                             0                      

                       0 

 

 

 

44

4 

44 

17

77 

32 

32 

17 
44 



 

                                            -1 

 

                                                                 -1 

              0 

 

 

                                                                                                    0 

 

                   -2 

                                                                                                           -1 

0                                              -2                                          

                                                                   RL                      0                                      0 

 

 

                                                      +1                                              0                           0                                                       

                                                                                                                                           

                                             0 

 

 

 

(a) Graph Traversal Techniques                                                                        (10) 

Solution: 

 Traversal of a graph means visiting each node and visiting exactly once. 

Two commonly used techniques are: 

 i)Depth-First Traversal 

Rule 1-If possible, visit an adjacent unvisited vertex, mark it, and push it on the stack.   

RULE 2-If you can’t follow Rule 1, then, if possible, pop a vertex off the stack.  

RULE 3-If you can’t follow Rule 1 or Rule 2, you’re done 

32 

17 44 

78 

32 

17 44 

78 

50      

32 

17 44 

44 78 



-> In this method, After visiting a vertex v, which is adjacent to w1, w2, w3, ...;  Next we visit 

one of v's adjacent vertices, w1 say.  Next, we visit all vertices adjacent to w1 before 

coming back to w2, etc. 

->Must keep track of vertices already visited to avoid cycles. 

->The method can be implemented using recursion or iteration. 

->The iterative preorder depth-first algorithm is: 

push the starting vertex onto the stack 

while(stack is not empty){ 

pop a vertex off the stack, call it v  

if v is not already visited, visit it 

    push vertices adjacent to v, not visited, onto the stack 

} 

ii)Breadth-First Traversal 

->In this method, After visiting a vertex v, we must visit all its adjacent vertices w1, w2, w3, 

...,  before going down next level to visit vertices adjacent to w1 etc. 

->The method can be implemented using a queue. 

->A boolean array is used to ensure that a vertex is enqueued only once. 

enqueue the starting vertex  

 while(queue is not empty){ 

       dequeue a vertex v from the queue; 

visit v.  

enqueue vertices adjacent to v that were never enqueued;   } 

Example: 

 

 

 

 

 

 

 

A 

C 
B 

E F 
D 



DFS: A,B,D,C,E,F 

BFS: A,B,C,D,E,F 

 

(b) Expression Trees                                                                                            (10) 

Solution: 

->Expression tree as name suggests is nothing but expressions arranged in a tree-like data 
structure. Each node in an expression tree is an expression.  

->it is a tree with leaves as operands of the expression and nodes contain the operators. 
Similar to other data structures, data interaction is also possible in an expression tree.  

->For example, an expression tree can be used to represent mathematical formula x < y 
where x, < and y will be represented as an expression and arranged in the tree like structure. 

->Expression tree is an in-memory representation of a lambda expression. It holds the actual 
elements of the query, not the result of the query. 

->Expression trees are mainly used for analyzing, evaluating and modifying 
expressions, especially complex expressions. 

 

 

(c) Application of Linked list -Polynomial Addition                                     (10) 

Solution: 

Code: 

#include<stdio.h> 

-

e

a

+

/

d

b

*

c

a + b*c/d - e



#include<stdlib.h> 

#include<ctype.h> 

struct node 

{ 

 int coef; 

 int exp; 

 struct node*next; 

}; 

 

struct node *insert(struct node *s, int c, int e) 

{ 

 struct node *temp; 

 struct node *ptr; 

 temp=(struct node *)malloc(sizeof(struct node)); 

 temp->coef=c; 

 temp->exp=e; 

 temp->next=NULL; 

 if(s==NULL) 

 { 

  s=temp; 

 } 

 else 

 

 { 

  ptr=s; 

  while(ptr->next!=NULL) 

  { 

   ptr=ptr->next; 

  } 



  ptr->next=temp; 

 } 

 return s; 

} 

  

struct node *addpoly(struct node *t1,struct node *t2) 

{ 

 struct node *t3=NULL; 

 int sum; 

 while(t1!=NULL && t2!=NULL) 

 { 

  if(t1->exp==t2->exp) 

  { 

   sum=t1->coef+t2->coef; 

   t3=insert(t3,sum,t1->exp); 

   t1=t1->next; 

   t2=t2->next; 

  } 

  else if((t1->exp) > (t2->exp)) 

   

         { 

   t3=insert(t3,t1->coef,t1->exp); 

   t1=t1->next; 

  } 

  else if(t2->exp > t1->exp) 

  { 

   t3=insert(t3,t2->coef,t2->exp); 

   t2=t2->next; 

  } 



   if(t1==NULL) 

  { 

   while(t2!=NULL) 

   { 

    t3=insert(t3,t2->coef,t2->exp); 

    t2=t2->next; 

   } 

  } 

   if(t2==NULL) 

  { 

   while(t1!=NULL) 

   { 

    t3=insert(t3,t1->coef,t1->exp); 

    t1=t1->next; 

   } 

  } 

  

} 

 return t3; 

} 

void display(struct node*temp) 

{ 

 

 while(temp!=NULL) 

 { 

  printf("%d %d\n",temp->coef,temp->exp); 

  temp=temp->next; 

 } 

} 



  

int main( ) 

{ 

 int n,m,i,c,e; 

 struct node *p1; 

 struct node *p2; 

 struct node *p3; 

 p1=NULL; 

 p2=NULL; 

 p3=NULL; 

 printf("Enter no. of terms in first polynomial \n"); 

 scanf("%d",&n); 

 for(i=0;i<=(n-1);i++) 

  

{ 

  printf("enter coefficient and exponent\n"); 

  scanf("%d %d",&c,&e); 

  p1=insert(p1,c,e); 

 } 

 printf("Enter no. of terms in second polynomial \n"); 

 scanf("%d",&m); 

 for(i=0;i<=(m-1);i++) 

 { 

  printf("enter coefficient and exponent\n"); 

  scanf("%d%d",&c,&e); 

  p2=insert(p2,c,e); 

 } 

 p3=addpoly(p1,p2); 

 printf("first polynomail: \n"); 



 display(p1); 

 printf("second  polynomail: \n"); 

 display(p2); 

 printf("resultant polynomail: \n"); 

 display(p3); 

 return 0; 

} 

Output: 

enter coefficient and exponent 

4 1 

enter coefficient and exponent 

6 0 

Enter no. of terms in second polynomial 

3 

enter coefficient and exponent 

7 2 

enter coefficient and exponent 

3 1 

enter coefficient and exponent 

1 0 

first polynomail: 

1 3 

2 2 

4 1 

6 0 

second  polynomail: 

7 2 

3 1 

1 0 



 

resultant polynomail: 

1 3 

9 2  

7 1 

7 0 

 



DATA STRUCTURES 

(DEC 2018) 

Q 1 

a) What are various operations possible on data structures?                        (05) 

 The data appearing in our data structure is processed by means of certain 

operations. In fact, the particular data structure that once chooses for a 

given situation depends largely on the frequency with which specific 

operations are performed: 

1. Insertion: Insertion means addition of a new data element in a data 

structure. 

2. Deletion: Deletion means removal of a data element from a data 

structure if it is found. 

3. Searching: Searching involves searching for the specified data element 

in a data structure. 

4. Traversal: Traversal of a data structure means processing all the data 

elements present in data structure. 

5. Sorting: Arranging data elements of a data structure in a specified order 

is called sorting. 

6. Merging: Combining elements of two similar data structures to form a 

new data structure of the same type, is called merging. 

 

b) What are different ways of representing a Graph data structure on a   (05) 

computer? 

 Graph is a data structure that consists of following two components: 

1. A finite set of vertices also called as nodes. 

2. A finite set of ordered pair of the form (u, v) called as edge. The pair is 

ordered because (u, v) is not same as (v, u) in case of a directed graph(di-

graph). The pair of the form (u, v) indicates that there is an edge from 

vertex u to vertex v. The edges may contain weight/value/cost. 

Following is an example of undirected graph with 5 vertices. 



 
There are two most commonly used representations of a graph. 

1. Adjacency Matrix 

- Adjacency Matrix is a 2D array of size V x V where V is the number    

of vertices in a graph.  

- Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is 

an edge from vertex i to vertex j.  

- Adjacency matrix for undirected graph is always symmetric. 

- Adjacency Matrix is also used to represent weighted graphs.  

- If adj[i][j] = w, then there is an edge from vertex i to vertex j with 

weight w. 

- Following is adjacency matrix representation of the above graph. 

 

 0 1 2 3 4 

0 0 1 0 0 1 

1 1 0 1 1 1 

2 0 1 0 1 0 

3 0 1 1 0 1 

4 1 1 0 1 0 

 

2. Adjacency List 

- An array of lists is used. Size of the array is equal to the number of 

vertices.  

- Let the array be array[]. An entry array[i] represents the list of 

vertices adjacent to the ith vertex.  

- This representation can also be used to represent a weighted graph.  

- The weights of edges can be represented as lists of pairs.  

- Following is adjacency list representation of the above graph. 



 
 

 

c) Describe Tries with an example.                                                                  (05) 

 - A trie is a tree-like data structure whose nodes store the letters of an 

alphabet. By structuring the nodes in a particular way, words and strings 

can be retrieved from the structure by traversing down a branch path of the 

tree. 

- A trie is a tree of degree P ≥ 2. 

- Tries re useful for sorting words as a string of characters. 

- In a trie, each path from the root to a leaf corresponds to one word. 

- Root node is always null. 

- To avoid confusion between words like THE and THEN, a special end 

marker symbol ‘\0’ is added at the end of each word. 

- Below fig shows the trie of the following words (THE, THEN, TIN, SIN, 

THIN, SING) 

 



- Most nodes of a trie has at most 27 children one for each letter and for 

'\0' 

- Most nodes will have fewer than 27 children. 

- A leaf node reached by an edge labelled '\0' cannot have any children and 

it need not be there. 

 

d) Write a function in C to implement binary search.                                  (05) 

 Binary Search: Search a sorted array by repeatedly dividing the search 

interval in half. Begin with an interval covering the whole array. If the 

value of the search key is less than the item in the middle of the interval, 

narrow the interval to the lower half. Otherwise narrow it to the upper half. 

Repeatedly check until the value is found or the interval is empty.  

 

C function to implement binary search: 

 

int binary_search(int sorted_list[], int low, int high, int element) 

{ 

    int middle; 

    while (low <= high) 

    { 

        middle = low + (high - low)/2; 

        if (element > sorted_list[middle]) 

            low = middle + 1; 

        else if (element < sorted_list[middle]) 

            high = middle - 1; 

        else 

            return middle; 

    } 

    return -1; 

} 

 

 

 

 

 

 



Q 2  

a) Use stack data structure to check well-formedness of parentheses in an 

algebraic expression. Write C program for the same.                                   (10) 

 An expression is said to be well formed with respect to parenthesis: 

1. If every opening parenthesis has a closing parenthesis. 

2. If we count number of parenthesis of left parenthesis and right 

parenthesis then at no time, count of right parenthesis should exceed 

the count of left parenthesis. 

3. A stack is used to validate an expression using simple rules by 

scanning the expression from left to right. 

- If opening bracket is found then push it on the stack. 

- If closing bracket is found then check the top of the stack if it is 

same then pop  

- If stack is empty then string is valid or else invalid. 
 

 



C program to check well-formedness of parentheses 

 

#include<stdio.h> 

#include<string.h> 

#define MAX 20 

#define true 1 

#define false 0 

 

int top = -1; 

int stack[MAX]; 

 

/*Begin of push*/ 

char push(char item) 

{ 

 if(top == (MAX-1)) 

  printf("Stack Overflow\n"); 

 else 

 { 

  top=top+1; 

  stack[top] = item; 

 } 

} 

 

/*Begin of pop*/ 

char pop() 

{ 

 if(top == -1) 

  printf("Stack Underflow\n"); 

 else 

  return(stack[top--]); 

} 

 

main() 

{ 

 char exp[MAX],temp; 

 int i,valid=true; 

 printf("Enter an algebraic expression : "); 



 gets(exp); 

 

 for(i=0;i<strlen(exp);i++) 

 { 

  if(exp[i]=='(' || exp[i]=='{' || exp[i]=='[') 

   push( exp[i] ); 

  if(exp[i]==')' || exp[i]=='}' || exp[i]==']') 

   if(top == -1)    /* stack empty */ 

    valid=false; 

   else 

   { 

    temp=pop(); 

    if( exp[i]==')' && (temp=='{' || temp=='[') ) 

     valid=false; 

    if( exp[i]=='}' && (temp=='(' || temp=='[') ) 

     valid=false; 

    if( exp[i]==']' && (temp=='(' || temp=='{') ) 

     valid=false; 

   } 

 } 

 if(top>=0) /*stack not empty*/ 

  valid=false; 

 

 if( valid==true ) 

  printf("Valid expression\n"); 

 else 

  printf("Invalid expression\n"); 

} 

 

Output: 

Enter an algebraic expression: {([])} 

Valid expression 

Enter an algebraic expression: (){} 

Valid expression 

Enter an algebraic expression: (){[[[) 

Invalid expression 

 



b) Give the frequency for the following symbols, compute the Huffman code 

for each symbol.                                                                                         (10)   

                                                                        

Symbol A B C D E 

Frequency 24 12 10 8 8 

 

 Huffman Code: 

- Huffman code is an application of binary trees with minimum weighted 

external path length is to obtain an optimal set for messages M1, M2, …Mn 

- Message is converted into a binary string. 

- Huffman code is used in encoding that is encrypting or compressing the 

text in the WSSS communication system. 

- It use patterns of zeros and ones in communication system these are used 

at sending and receiving end. 

- suppose there are n standard message M1, M2, ……Mn. Then the 

frequency of each message is considered, that is message with highest 

frequency is given priority for the encoding. 

- The tree is called encoding tree and is present at the sending end. 

- The decoding tree is present at the receiving end which decodes the string 

to get corresponding message. 

- The cost of decoding is directly proportional to the number of bits in the 

transmitted code is equal to distance of external node from the root in the 

tree. 

- Example 

 

Symbol A B C D E 

Frequency 24 12 10 8 8 

 

Arrange the message in ascending order according to their frequency 

 
Merge two minimum frequency message 



 
Rearrange in ascending order 

 
Merge two minimum frequency message 

 
Rearrange in ascending order 

                

Merge two minimum frequency message 

 
Again Rearrange in ascending order 



 
Merge two minimum frequency message 

 
Huffman code 

A = 0 

B = 111 

C = 110 

D = 100 

E = 101 

 

 

 

 

 

 

 

 

 

 



Q 3 

a) Write a C program to implement priority queue using arrays. The 

program should perform the following operations                                         (12) 

i) Inserting in a priority queue 

ii) Deletion from a queue 

iii) Displaying contents of the queue 

 Program: 

 

#include <stdio.h> 

#include <stdlib.h> 

#define MAX 30 

  

typedef struct pqueue 

{ 

    int data[MAX]; 

    int rear,front; 

}pqueue; 

  

void initialize(pqueue *p); 

int empty(pqueue *p); 

int full(pqueue *p); 

void enqueue(pqueue *p, int x); 

int dequeue(pqueue *p); 

void display(pqueue *p); 

  

void main() 

{ 

    int x,op,n,i; 

    pqueue q; 

    initialize(&q); 

  

    do 

    { 

        printf("\n1)Create \n2)Insert \n3)Delete \n4)Print \n5)EXIT"); 

        printf("\nEnter Choice: "); 

        scanf("%d",&op); 



        switch (op) { 

            case 1: printf("\nEnter Number of Elements"); 

                    scanf("%d",&n ); 

                    initialize(&q); 

                    printf("Enter the data"); 

  

                    for(i=0; i<n; i++) 

                    { 

                        scanf("%d",&x); 

                        if(full(&q)) 

                        { 

                            printf("\nQueue is Full.."); 

                            exit(0); 

                        } 

                        enqueue(&q,x); 

                    } 

                    break; 

  

            case 2: printf("\nEnter the element to be inserted"); 

                    scanf("%d\n",&x); 

                    if(full(&q)) 

                    { 

                        printf("\nQueue is Full"); 

                        exit(0); 

                    } 

                    enqueue(&q,x); 

                    break; 

  

            case 3: if(empty(&q)) 

                    { 

                        printf("\nQueue is empty.."); 

                        exit(0); 

                    } 

  

                    x=dequeue(&q); 

                    printf("\nDeleted Element=%d",x); 

                    break; 



  

            case 4: display(&q); 

                    break; 

            default: break; 

        } 

    }while (op!=5); 

} 

  

void initialize(pqueue *p) 

{ 

    p->rear=-1; 

    p->front=-1; 

} 

  

int empty(pqueue *p) 

{ 

    if(p->rear==-1) 

        return(1); 

  

    return(0); 

} 

  

int full(pqueue *p) 

{ 

    if((p->rear+1)%MAX==p->front) 

        return(1); 

  

    return(0); 

} 

  

void enqueue(pqueue *p, int x) 

{ 

    int i; 

    if(full(p)) 

        printf("\nOverflow"); 

    else 

    { 



        if(empty(p)) 

        { 

            p->rear=p->front=0; 

            p->data[0]=x; 

        } 

        else 

        { 

            i=p->rear; 

  

            while(x>p->data[i]) 

            { 

                p->data[(i+1)%MAX]=p->data[i]; 

                i=(i-1+MAX)%MAX; //anticlockwise movement inside the 

queue 

                if((i+1)%MAX==p->front) 

                    break; 

            } 

  

            //insert x 

            i=(i+1)%MAX; 

            p->data[i]=x; 

  

            //re-adjust rear 

            p->rear=(p->rear+1)%MAX; 

        } 

    } 

} 

  

int dequeue(pqueue *p) 

{ 

    int x; 

  

    if(empty(p)) 

    { 

        printf("\nUnderflow.."); 

    } 

    else 



    { 

        x=p->data[p->front]; 

        if(p->rear==p->front)   //delete the last element 

            initialize(p); 

        else 

            p->front=(p->front +1)%MAX; 

    } 

  

    return(x); 

} 

  

void display(pqueue *p) 

{ 

    int i,x; 

  

    if(empty(p)) 

    { 

        printf("\nQueue is empty.."); 

    } 

    else 

    { 

        i=p->front; 

        while(i!=p->rear) 

        { 

            x=p->data[i]; 

            printf("\n%d",x); 

            i=(i+1)%MAX; 

        } 

  

        //prints the last element 

        x=p->data[i]; 

        printf("\n%d",x); 

    } 

} 

 

 



              Output: 

1)Create 

2)Insert 

3)Delete 

4)Display 

5)EXIT 

Enter Choice: 1 

 

Enter Number of Elements4 

Enter the data9 

12 

4 

6 

 

1)Create 

2)Insert 

3)Delete 

4)Display 

5)EXIT 

Enter Choice: 4 

 

12 

9 

6 

4 

1)Create 

2)Insert 

3)Delete 

4)Display 

5)EXIT 

Enter Choice: 3 

 

Deleted Element=12 

1)Create 

2)Insert 

3)Delete 



4)Display 

5)EXIT 

Enter Choice: 5 

 

b) What are expression trees? What are its advantages? Derive the 

expression tree for the following algebraic expression                           (08) 

(a + (b/c)) * ((d/e) - f) 

 Expression Tree: Compilers need to generate assembly code in which one 

operation is executed at a time and the result is retained for other 

operations. 

- Therefore, all expression has to be broken down unambiguously into 

separate operations and put into their proper order. 

- Hence, expression tree is useful which imposes an order on the 

execution of operations. 

- Expression tree is a binary tree in which each internal node corresponds 

to operator and each leaf node corresponds to operand 

- Parentheses do not appear in expresion trees, but their intent remains 

intact in tree representation. 

Construction of Expression Tree: 

Now for constructing expression tree we use a stack. We loop through 

input expression and do following for every character. 

1) If character is operand push that into stack 

2) If character is operator pop two values from stack make them its child 

and push current node again. 

At the end only element of stack will be root of expression tree. 

Advantage: 

1. Expression trees are using widely in LINQ to SQL, Entity Framework 

extensions where the runtime needs to interpret the expression in a 

different way (LINQ to SQL and EF: to create SQL, MVC: to 

determine the selected property or field). 

2. Expression trees allow you to build code dynamically at runtime 

instead of statically typing it in the IDE and using a compiler. 

 

     Expression Tree: (a + (b/c)) * ((d/e) - f) 



 

______________________________________________________________________________ 

Q 4 

a) Write a C program to represent and add two polynomials using linked 

list.                                                                                                               (12) 
 

 Program: 

 

#include<stdio.h> 

#include<stdlib.h> 

 

typedef struct node  

{ 

    int coef; 

    int exp; 

    struct node* next; 

} node; 

 

void get_input(node** head) 

{ 

    node* temp,*ptr; 

    ptr = *head; 

    temp = (node*)malloc(sizeof(node)); 

     

    printf("\nEnter coef : "); 

    scanf("%d",&(temp->coef)); 



    printf("\nEnter exp : "); 

    scanf("%d",&(temp->exp)); 

     

    if(NULL == *head) 

    { 

        *head = temp; 

        (*head)->next = NULL; 

    } 

    else 

    { 

        while(NULL != ptr->next) 

        { 

            ptr = ptr->next;         

        } 

        ptr->next = temp; 

        temp->next = NULL; 

    } 

} 

 

void display(node* head) 

{ 

    while(head->next != NULL) 

    { 

        printf("(%d.x^%d)+",head->coef,head->exp); 

        head = head->next; 

    } 

    printf("(%d.x^%d)",head->coef,head->exp); 

    printf("\n"); 

} 

 

void add(node* poly, node* poly1, node* poly2 ) //poly==result 

{ 

    while(poly1->next && poly2->next) 

    { 

        if(poly1->exp > poly2->exp) 

        { 

            poly->coef = poly1->coef; 



            poly->exp = poly1->exp;     

            poly1 = poly1->next; 

        } 

        else if(poly1->exp < poly2->exp) 

        { 

            poly->coef = poly2->coef; 

            poly->exp = poly2->exp;     

            poly2 = poly2->next; 

        } 

        else 

        { 

            poly->coef = poly1->coef + poly2->coef; 

            poly->exp = poly1->exp;     

            poly1 = poly1->next; 

            poly2 = poly2->next; 

        } 

        poly->next = (node*)malloc(sizeof(node)); 

        poly = poly->next; 

        poly->next = NULL; 

    } 

     

    while(poly1->next || poly2->next) 

    { 

        if(poly1->next) 

        { 

            poly->coef = poly1->coef; 

            poly->exp= poly1->exp; 

            poly1 = poly1->next;  

        } 

        if(poly2->next) 

        { 

            poly->coef = poly2->coef; 

            poly->exp= poly2->exp; 

            poly2 = poly2->next;  

        } 

        poly->next = (node*)malloc(sizeof(node)); 

        poly = poly->next; 



        poly->next = NULL; 

    } 

} 

 

int main()  

{ 

    node* head1 = NULL; 

    node* head2 = NULL; 

    node* head = (node*)malloc(sizeof(node)); 

    int ch; 

     

    do 

    { 

        get_input(&head1); 

        printf("\nEnter more node in poly1? (1,0) :"); 

        scanf("%d",&ch); 

    }while(ch); 

    do 

    { 

        get_input(&head2); 

        printf("\nEnter more node in poly2? (1,0) :"); 

        scanf("%d",&ch); 

    }while(ch); 

     

    add(head,head1,head2); 

    display(head1); 

    display(head2); 

    display(head); 

     

    return 0; 

} 

 

Output: 

Enter coef: 6 

Enter exp: 2 

Enter more node in poly1? (1/0): 1 

Enter coef: 4 



Enter exp: 1 

Enter more node in poly1? (1/0): 1 

Enter coef: 2 

Enter exp: 0 

Enter more node in poly? (1/0): 0 

Enter coef: 4 

Enter exp: 2 

Enter more node in poly2? (1/0): 1 

Enter coef: 2 

Enter exp: 1 

Enter more node in poly2? (1/0): 1 

Enter coef: 3 

Enter exp: 0 

Enter more node in poly2? (1/0): 0 

(6.x^2)+(4.x^1)+(2.x^0) 

(4.x^2)+(2.x^1)+(3.x^0) 

(10.x^2)+(6.x^1)+(5.x^0) 

 

b) How does the Quicksort technique work? Give C function for the same.    

                                                                                                                    (08)   

 Quick Sort: 

- Quick sort is the fastest internal sorting algorithm with the time and space 

complexity = O(n log n).  

- The basic algorithm to sort an array a[] of n elements can be describe 

recursively as follows: 

1. If n <= 1, then return 

2. Pick any element V in array a[]. This element is called as pivot. 

    Rearrange elements of the array by moving all elements xᵢ > V right of 

V and all elements xᵢ ≤ V left of V. if the place of the V after re-

arrangement is j, all elements with value less than V, appear in a[0], a[1] 

… a[j-1] and all those with value greater than V appear in a[j+1] … a[n-1] 

3. Apply quick sort recursively to a[0] … a[j-1] and to a a[j+1] … a[n-1] 

Entire array will thus be sorted by as selecting an element V. 

a) Partitioning the array around V. 

b) Recursively, sorting the left partition. 

c) Recursively, sorting the right partition. 



 

                C function for partition 

                 int partition(int a[], int l, int u) 

                 { 

                  int v,i,j,temp; 

                  v=a[l]; 

                  i=l; 

                 j=u+1; 

                 do; 

                 { 

                         do 

                              i++; 

                         while(a[i]<v && i<=u); 

                               do 

                                         j--; 

                               while(v<a[j]); 

                                                        if(i<j) 



                               { 

                                          temp=a[i]; 

                                           a[i]=a[j]; 

                                           a[j]=temp; 

                                } 

                   }while(i<j); 

                 a[l]=a[j]; 

                 a[j]=v; 

                 return(j); 

             } 

 

         C function for Quick Sort   

      

         void quick_sort(int a[], int l, int u) 

         {  

             int j; 

             if(l<u) 

             { 

                    j=partition(a, l, u); 

                    quick_sort(a, l, j-1); 

                    quick_sort(a, j+1, u); 

             } 

          } 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  



Q 5  

a) What is a doubly linked list? Give C representation for the same.       (05) 

 Doubly linked list: 

1. Doubly Linked List is a variation of Linked list in which navigation is 

possible in both ways, either forward and backward easily as compared 

to Single Linked List. 

2. Every nodes in the doubly linked list has three fields: LeftPointer, 

RightPointer and Data. 

LeftPointer = Left pointer points towards the left node. 

RightPointer = Right pointer points towards the right node. 

Data = Node which stores the data.  

3.  The last node has a next link with value NULL, marking the end of the 

list, and the first node has a previous link with the value NULL. The 

start of the list is marked by the head pointer. 

 

 
C Representation of Doubly Linked List 

 

Structure of doubly link list will contain three fields LeftPointer (prev), 

RightPointer (next), and the data as shown below 

 

struct Node  { 

 int data; 

 struct Node* next; 

 struct Node* prev; 

}; 

 

b) Given the postorder and inorder traversal of a binary tree, construct the 

original tree:                                                                                               (10) 

Postorder: D E F B G L J K H C A 

Inorder: D B F E A G C L J H K 

 



 Construction of Tree: 

 

Step1: Select last element from the postorder as root node. So element A 

becomes root node. Divide the inorder into left and right with respect to 

root node A. 

 
Step 2: Traverse element D B F E from postorder as B comes in last B 

becomes child node of A and similarly traverse G C L J H K in postorder 

C comes at last C becomes child node of A. Again with respect to B and 

C divide element into left and right as shown below 

 
Step 3: As D is single it becomes child node of B and for left node of B 

Traverse F E in postorder F comes at last so F becomes child node of B. 

similarly, G and H become child node of C as shown below. 

 
Step 4: As E is single it becomes child node of F. Traverse L J which is 

left element of node H in postorder as J comes last J becomes child node 

of H as K is single it becomes another child node. 



 
Step 5: As L is simgle it becomes child node of J 

 
Original Tree 

 

c) What is hashing? What properties should a good hash function 

demonstrate?                                                                                                 (05) 

 Hashing: 

- Hashing is a technique by which updating or retrieving any entry can be 

achieved in constant time O(1). 

- In mathematics, a map is a relationship between two sets. A map M is a 

set of pairs, where each pair is in the form of (key, value). For a given key, 

its corresponding value can be found with the help of a function that maps 

keys to values. This function is known as the hash function. 

- So, given a key k and a hash function h, we can compute the 

value/location of the value v by the formula v = h(k). 

- Usually the hash function is a division modulo operation, such as h(k)=k 

mod size, where size is the size of the data structure that holds the values. 

- Hashing is a way with the requirement of keeping data sorted. 

- In best case time complexity is of constant order O(1) in worst case O(n) 



- Address or location of an element or record, x, is obtained by computing 

some arithmetic function f.f(key) gives the address of x in the table. 

- Table used for storing of records is known as hash table. 

- Function f(key) is known as hash function. 

 

 
Mapping of records in hash table 

 

Properties of good hash function: 

1. A good hash function avoids collisions. 

2. A good hash function tends to spread keys evenly in the array. 

3. A good hash function is easy to compute. 

4. The hash function should generate different hash values for the similar 

string. 

5. The hash function is a perfect hash function when it uses all the input 

data. 

__________________________________________________________________ 

Q 6  

a) Given an array int a[] = {69, 78, 63, 98, 67, 75, 66, 90, 81}. Calculate 

address of a[5] if base address is 1600.                                                     (02) 
  

Address 1600 1604 1608 1612 1616 1620 1624 1628 1632 

Elements 69 78 63 98 67 75 66 90 81 

Array 0 1 2 3 4 5 6 7 8 

 

Address of A [ I ] = B + W * ( I – LB ) 



Where, B = Base address 1600 (given) 

W = Storage Size of one element stored in the array (in byte) = 4 

I = Subscript of element whose address is to be found = 5 (given) 

LB = Lower limit / Lower Bound of subscript, if not specified assume 0  

 

Address of A [ 5 ] = 1600 + 4 * ( 5 – 0 ) 

                                                         = 1600 + 4 * 5 

                                                         = 1600 + 20 

                                                A [5] = 1620 

 

One can verify it from table too A[5] has element 75 stored at address 

1620. 

 

b) Give C function for Breadth First Search Traversal of a graph. Explain 

the code with an example.                                                                           (10) 

 C function for Breadth First Search 

 

void BFS(int V) 

{ 

       q : a queue type variable; 

       initialize q; 

       visited[v] = 1; // mark v as visited 

       add the vertex V to queue q; 

       while(q is not empty) 

       { 

            v  delete an element from the queue; 

            for all vertices w adjacent from V 

            { 

                   if(!visited[w]) 

                    { 

                          visited[w] = 1; 

                          add the vertex w to queue q;  

                    } 

            } 

       } 

} 

 



Example: 

 
Queue Visited[] Vertex visited Action 

Null 

 

- - 

V1 

 

V1 Add (q, v1) visit (V1) 

V2 V3 

 

V1 V2 V3 Delete (q), add and 

visit adjacent vertices 

V3 V4 V5 

 

V1 V2 V3 V4 V5 Delete (q), add and 

visit adjacent vertices 

V4 V5 V6 V7 

 

V1 V2 V3 V4 V5 V6 

V7 

Delete (q), add and 

visit adjacent vertices 

V5 V6 V7 V8 

 

V1 V2 V3 V4 V5 V6 

V7 V8 

Delete (q), add and 

visit adjacent vertices 

V6 V7 V8 

 

V1 V2 V3 V4 V5 V6 

V7 V8 

Delete (q) 

V7 V8 

 

V1 V2 V3 V4 V5 V6 

V7 V8 

Delete (q), add and 

visit adjacent vertices 

V8 

 

V1 V2 V3 V4 V5 V6 

V7 V8 

Delete (q) 

Null 

 

V1 V2 V3 V4 V5 V6 

V7 V8 

Algorithm terminates 

as the queue is empty 



c) Write a C program to implement a singly linked list. The program should 

be able to perform the following operations:                                           (08) 

i) Insert a node at the end of the list 

ii) Deleting a particular element 

iii) Display the linked list 

 Program: 

 

#include<stdio.h> 

#include<conio.h> 

#include<process.h> 

  

struct node 

{ 

    int data; 

    struct node *next; 

}*start=NULL,*q,*t; 

  

int main() 

{ 

    int ch; 

    void insert_end(); 

    int delete_pos(); 

    void display(); 

  

    while(1) 

    { 

        printf("\n\n---- Singly Linked List(SLL) Menu ----"); 

        printf("\n1.Insert at end \n2.Delete specific node \n 3.Display     

\n4.Exit\n\n"); 

        printf("Enter your choice(1-4):"); 

        scanf("%d",&ch); 

  

        switch(ch) 

        { 

            case 1: insert_end(); 

                        break; 

 



            case 2: delete_pos(); 

                        break; 

  

            case 3: display(); 

                       break; 

                    

            case 4: exit(0); 

                       default:  

                       printf("Wrong Choice!!"); 

        } 

    } 

    return 0; 

} 

  

void insert_end() 

{ 

    int num; 

    t=(struct node*)malloc(sizeof(struct node)); 

    printf("Enter data:"); 

    scanf("%d",&num); 

    t->data=num; 

    t->next=NULL; 

  

    if(start==NULL)        //If list is empty 

    { 

        start=t; 

    } 

    else 

    { 

        q=start; 

        while(q->next!=NULL) 

        q=q->next; 

        q->next=t; 

    } 

} 

   

int delete_pos() 



{ 

    int pos,i; 

  

    if(start==NULL) 

    { 

        printf("List is empty!!"); 

        return 0; 

    } 

  

    printf("Enter position to delete:"); 

    scanf("%d",&pos); 

  

    q=start; 

    for(i=1;i<pos-1;i++) 

    { 

        if(q->next==NULL) 

        { 

            printf("There are less elements!!"); 

            return 0; 

        } 

        q=q->next; 

    } 

  

    t=q->next; 

    q->next=t->next; 

    printf("Deleted element is %d",t->data); 

    free(t); 

  

    return 0; 

} 

 

void display() 

{ 

    if(start==NULL) 

    { 

        printf("List is empty!!"); 

    } 



    else 

    { 

        q=start; 

        printf("The linked list is:\n"); 

        while(q!=NULL) 

        { 

            printf("%d->",q->data); 

            q=q->next; 

        } 

    } 

} 

 

Output: 
 

---- Singly Linked List(SLL) Menu ---- 

1.Insert at end 

2.Delete specific node  

3.Display  

4.Exit 

 

Enter your choice (1-4): 1 

Enter data: 2 

 

---- Singly Linked List(SLL) Menu ---- 

1.Insert at end 

2.Delete specific node  

3.Display  

4.Exit 

 

Enter your choice (1-4): 1 

Enter data: 3 

 

---- Singly Linked List(SLL) Menu ---- 

1.Insert at end 

2.Delete specific node  

3.Display  

4.Exit 



 

Enter your choice (1-4): 1 

Enter data: 4 

 

---- Singly Linked List(SLL) Menu ---- 

1.Insert at end 

2.Delete specific node  

3.Display  

4.Exit 

 

Enter your choice (1-4): 3 

The linked list is: 

2 -> 3->4-> 

 

---- Singly Linked List(SLL) Menu ---- 

1.Insert at end 

2.Delete specific node  

3.Display  

4.Exit 

 

Enter your choice (1-4): 2 

Enter position to delete: 2 

Deleted element is 3 

 

---- Singly Linked List(SLL) Menu ---- 

1.Insert at end 

2.Delete specific node  

3.Display  

4.Exit 

 

Enter your choice (1-4): 3 

The linked list is: 

2 -> 4-> 

 

 

********** 

 



 

 

 

 

 
 

 

 

 



DATA STRUCTURE 

(DEC 2019) 

Q.1 

a) Define data structure. Differentiate linear and Non-linear data structure  

    with example.                                                                                                (5) 

 Data Structure 

A data structure is a specialized format for organizing, processing, 

retrieving and storing data. 

 

Parameters Linear Non-Linear 

Basic The data items are 

arranged in an orderly 

manner where the 

elements are attached 

adjacently. 

It arranges the data in a 

sorted order and there 

exists a relationship 

between the data 

elements. 

Traversing of the data The data elements can be 

accessed in one time 

(single run). 

Traversing of data 

elements in one go is not 

possible. 

Ease of implementation Simpler 
 

Complex 
 

Levels involved Single level 
 

Multiple level 

 

Memory utilization Ineffective 
 

Effective 
 

Examples Array, queue, stack, 

linked list, etc. 

Tree and graph. 

 

b) Write C function to implement insertion sort.                                          (5) 

 Insertion Sort 

Insertion sort is a simple sorting algorithm that works the way we sort playing 

cards in our hands. 

Algorithm 

// Sort an arr[] of size n 

insertionSort(arr, n) 

Loop from i = 1 to n-1. 

Pick element arr[i] and insert it into sorted sequence arr[0…i-1]  



-C function 

/* Function to sort an array using insertion sort*/ 

void insertionSort(int arr[], int n)   

{   

    int i, key, j;   

    for (i = 1; i < n; i++)  

    {   

        key = arr[i];   

        j = i - 1;   

   

        /* Move elements of arr[0..i-1], that are   

        greater than key, to one position ahead   

        of their current position */ 

        while (j >= 0 && arr[j] > key)  

        {   

            arr[j + 1] = arr[j];   

            j = j - 1;   

        }   

        arr[j + 1] = key;   

    }   

}   

 

c) What are the different ways to represent graphs in memory.                 (5) 

 Graph is a data structure that consists of following two components:  

1. A finite set of vertices also called as nodes.  

2. A finite set of ordered pair of the form (u, v) called as edge. The pair 

is ordered because (u, v) is not same as (v, u) in case of a directed 

graph(digraph). The pair of the form (u, v) indicates that there is an 

edge from vertex u to vertex v. The edges may contain 

weight/value/cost.  

Following is an example of undirected graph with 5 vertices.  

  
There are two most commonly used representations of a graph.  



1. Adjacency Matrix  

- Adjacency Matrix is a 2D array of size V x V where V is the 

number    of vertices in a graph.   

- Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there 

is an edge from vertex i to vertex j.   

- Adjacency matrix for undirected graph is always symmetric.  

- Adjacency Matrix is also used to represent weighted graphs.  - If 

adj[i][j] = w, then there is an edge from vertex i to vertex j with 

weight w.  

- Following is adjacency matrix representation of the above graph.  

  

  0  1  2  3  4  

0  0  1  0  0  1  

1  1  0  1  1  1  

2  0  1  0  1  0  

3  0  1  1  0  1  

4  1  1  0  1  0  

  

2. Adjacency List  

- An array of lists is used. Size of the array is equal to the number of 

vertices.   

- Let the array be array[]. An entry array[i] represents the list of 

vertices adjacent to the ith vertex.   

- This representation can also be used to represent a weighted graph.   

- The weights of edges can be represented as lists of pairs.   

- Following is adjacency list representation of the above graph.  

 
  

 

 



d) What is expression tree? Derive an expression for (a+(b*c))/((d-c)*f).  (5) 

 Expression Tree: Compilers need to generate assembly code in which one 

operation is executed at a time and the result is retained for other 

operations.  

- Therefore, all expression has to be broken down unambiguously into 

separate operations and put into their proper order.  

- Hence, expression tree is useful which imposes an order on the 

execution of operations.  

- Expression tree is a binary tree in which each internal node 

corresponds to operator and each leaf node corresponds to operand  

- Parentheses do not appear in expresion trees, but their intent remains 

intact in tree representation. Construction of Expression Tree:  

Now for constructing expression tree we use a stack. We loop through 

input expression and do following for every character.  

1) If character is operand push that into stack  

2) If character is operator pop two values from stack make them its child 

and push current node again.  

At the end only element of stack will be root of expression tree.  

Advantage:  

1. Expression trees are using widely in LINQ to SQL, Entity 

Framework extensions where the runtime needs to interpret the 

expression in a different way (LINQ to SQL and EF: to create 

SQL, MVC: to determine the selected property or field).  

2. Expression trees allow you to build code dynamically at runtime 

instead of statically typing it in the IDE and using a compiler.  

- Expression Tree

 
 



Q.2 

a) What is hashing? Hash the following data in table of size 10 using linear 

     probing and quadratic probing. Also find the number of collisions. 

   63, 84, 94, 77, 53, 87, 23, 55, 10, 44                                                             (10) 

 Hashing:  

- Hashing is a technique by which updating or retrieving any entry can 

be achieved in constant time O(1).  

- In mathematics, a map is a relationship between two sets. A map M is 

a set of pairs, where each pair is in the form of (key, value). For a given 

key, its corresponding value can be found with the help of a function 

that maps keys to values. This function is known as the hash function.  

- So, given a key k and a hash function h, we can compute the 

value/location of the value v by the formula v = h(k).  

- Usually the hash function is a division modulo operation, such as 

h(k)=k mod size, where size is the size of the data structure that holds 

the values.  

- Hashing is a way with the requirement of keeping data sorted.  

- In best case time complexity is of constant order O(1) in worst case 

O(n)  

- Address or location of an element or record, x, is obtained by 

computing some arithmetic function f.f(key) gives the address of x in 

the table.  

- Table used for storing of records is known as hash table.  

- Function f(key) is known as hash function.  

  

 
Mapping of records in hash table  

 Linear Probing 



 Empty  

table 

After 

63 

After 

84 

After 

94 

 

After 

77 

After 

53 

After 

87 

After 

23 

After 

55 

After 

10 

After 

44 

0          10 10 

1         55 55 55 

2           44 

3  63 63 63 63 63 63 63 63 63 63 

4   84 84 84 84 84 84 84 84 84 

5    94 94 94 94 94 94 94 94 

6      53 53 53 53 53 53 

7     77 77 77 77 77 77 77 

8       87 87 87 87 87 

9        23 23 23 23 

No. of collision= 6 

 Quadratic Probing 

 Empty  

table 

After 

63 

After 

84 

After 

94 

 

After 

77 

After 

53 

After 

87 

After 

23 

After 

55 

After 

10 

After 

44 

 

0          10 10  

1         55 55 55 * 

2           44 * 

3  63 63 63 63 63 63 63 63 63 63  

4   84 84 84 84 84 84 84 84 84  

5    94 94 94 94 94 94 94 94 * 

6      53 53 53 53 53 53 * 

7     77 77 77 77 77 77 77  

8       87 87 87 87 87 * 

9        23 23 23 23 * 

 

 

b) Write recursive function to perform preorder traversal of binary.       (8) 

 Recursive function 

/* Given a binary tree, print its nodes in preorder*/ 

void printPreorder(struct Node* node)  

{  

    if (node == NULL)  

        return;  



   

    /* first print data of node */ 

    cout << node->data << " ";  

   

    /* then recur on left subtree */ 

    printPreorder(node->left);   

   

    /* now recur on right subtree */ 

    printPreorder(node->right);  

}   

 

c) Given an array int a[]={23, 55, 63, 89, 45, 67, 85, 99}. Calculate address         

    of a[5] if base address is 5100.                                                                     (2) 

  

Address  5100 5104 5108  5112  5116  5120  5124  5128  

Elements  23 55  63  89  45  67  85  99  

Array  0  1  2  3  4  5  6  7  

  

Address of A [ I ] = B + W * ( I – LB )  

Where, B = Base address 5100 (given)  

W = Storage Size of one element stored in the array (in byte) = 4  

I = Subscript of element whose address is to be found = 5 (given)  

LB = Lower limit / Lower Bound of subscript, if not specified assume 

0   

  

Address of A [ 5 ] = 5100 + 4 * ( 5 – 0 )  

   = 5100 + 4 * 5 

= 5100 + 20 

                                A [5] = 5120 

One can verify it from table too A[5] has element 67 stored at address 

5120.  

  

 

 



Q.3 

a) Write a C program to convert infix expression to postfix expression.  (10) 

 Program 

#include<stdio.h> 

char stack[20]; 

int top = -1; 

void push(char x) 

{ 

stack[++top] = x; 

} 

char pop() 

{ 

if(top == -1) 

return -1; 

else 

return stack[top--]; 

} 

int priority(char x) 

{ 

if(x == '(') 

return 0; 

if(x == '+' || x == '-') 

return 1; 

if(x == '*' || x == '/') 

return 2; 

} 

main() 

{ 

char exp[20]; 

char *e, x; 

printf("Enter the expression :: "); 

scanf("%s",exp); 

e = exp; 

while(*e != '\0') 

{ 

if(isalnum(*e)) 

printf("%c",*e); 

else if(*e == '(') 

push(*e); 

else if(*e == ')') 

{ 



while((x = pop()) != '(') 

printf("%c", x); 

} 

else 

{ 

while(priority(stack[top]) >= priority(*e)) 

printf("%c",pop()); 

push(*e); 

} 

e++; 

} 

while(top != -1) 

{ 

printf("%c",pop()); 

} 

} 

 

Output: 

Enter the expression :: a+b*c 

abc*+ 

 

 

 

 

b) Demonstrate step by step insertion of the following elements in an AVL       

     tree. 

     63, 9, 19, 18, 108, 81, 45                                                                             (10) 

 

Sr

.n

o 

Data 

to be 

inser

t 

Tree after insertion Tree after rotation 

1 63 

 

 



2 9 

 

 

3 19 

 

 

4 18 

 

 

5 108 

 

 



6 81 

 

 

7 45 

 

 

 

Q.4 

a) Write C program to implement circular linked list that perform        

     following functions. 

  - insert a node at beginning 

  - insert a node at end 

  - Count the number of nodes 

  - Display the list                                                                                            (10) 

 Program 

#include<stdio.h> 



#include<stdlib.h> 

struct Node; 

typedef struct Node * PtrToNode; 

typedef PtrToNode List; 

typedef PtrToNode Position; 

struct Node 

{ 

int e; 

Position next; 

}; 

void Insert(int x, List l, Position p) 

{ 

Position TmpCell; 

TmpCell = (struct Node*) malloc(sizeof(struct Node)); 

if(TmpCell == NULL) 

printf("Memory out of space\n"); 

else 

{ 

TmpCell->e = x; 

TmpCell->next = p->next; 

p->next = TmpCell; 

} 

} 

int isLast(Position p, List l) 

{ 

return (p->next == l); 

} 

Position FindPrevious(int x, List l) 

{ 



Position p = l; 

while(p->next != l && p->next->e != x) 

p = p->next; 

return p; 

} 

Position Find(int x, List l) 

{ 

Position p = l->next; 

while(p != l && p->e != x) 

p = p->next; 

return p; 

} 

void Delete(int x, List l) 

{ 

Position p, TmpCell; 

p = FindPrevious(x, l); 

if(!isLast(p, l)) 

{ 

TmpCell = p->next; 

p->next = TmpCell->next; 

free(TmpCell); 

} 

else 

printf("Element does not exist!!!\n"); 

} 

void Display(List l) 

{ 

printf("The list element are :: "); 

Position p = l->next; 



while(p != l) 

{ 

printf("%d -> ", p->e); 

p = p->next; 

} 

} 

void main() 

{ 

int x, pos, ch, i; 

List l, l1; 

l = (struct Node *) malloc(sizeof(struct Node)); 

l->next = l; 

List p = l; 

printf("CIRCULAR LINKED LIST IMPLEMENTATION OF LIST ADT\n\n"); 

do 

{ 

printf("\n\n1. INSERT\t 2. DELETE\t 3. FIND\t 4. PRINT\t 5. QUIT\n\nEnter 

the choice :: "); 

scanf("%d", &ch); 

switch(ch) 

{ 

case 1: 

p = l; 

printf("Enter the element to be inserted :: "); 

scanf("%d",&x); 

printf("Enter the position of the element :: "); 

scanf("%d",&pos); 

for(i = 1; i < pos; i++) 

{ 



p = p->next; 

} 

Insert(x,l,p); 

break; 

case 2: 

p = l; 

printf("Enter the element to be deleted :: "); 

scanf("%d",&x); 

Delete(x,p); 

break; 

case 3: 

p = l; 

printf("Enter the element to be searched :: "); 

scanf("%d",&x); 

p = Find(x,p); 

if(p == l) 

printf("Element does not exist!!!\n"); 

else 

printf("Element exist!!!\n"); 

break; 

case 4: 

Display(l); 

break; 

} 

}while(ch<5); 

return 0; 

} 

 

 



Output: 

CIRCULAR LINKED LIST  

1. INSERT        2. DELETE       3. FIND         4. PRINT        5. QUIT 

Enter the choice :: 1 

Enter the element to be inserted :: 10 

Enter the position of the element :: 1 

1. INSERT        2. DELETE       3. FIND         4. PRINT        5. QUIT 

Enter the choice :: 1 

Enter the element to be inserted :: 20 

Enter the position of the element :: 2 

1. INSERT        2. DELETE       3. FIND         4. PRINT        5. QUIT 

Enter the choice :: 1 

Enter the element to be inserted :: 30 

Enter the position of the element :: 3 

1. INSERT        2. DELETE       3. FIND         4. PRINT        5. QUIT 

Enter the choice :: 4 

The list element are :: 10 -> 20 -> 30 -> 

1. INSERT        2. DELETE       3. FIND         4. PRINT        5. QUIT 

Enter the choice :: 5 

 

 

b) Given the frequency for the following symbol, compute the Huffman code 

for each symbol.      

   

 

                                                                                                                          (10) 

 Huffman Code:  

- Huffman code is an application of binary trees with minimum weighted 

external path length is to obtain an optimal set for messages M1, M2, 

…Mn  

- Message is converted into a binary string 

- Huffman code is used in encoding that is encrypting or compressing the 

text in the WSSS communication system.  

- It use patterns of zeros and ones in communication system these are used 

at sending and receiving end.  

- suppose there are n standard message M1, M2, ……Mn. Then the 

frequency of each message is considered, that is message with highest 

frequency is given priority for the encoding.  

Symbol A B C D E F 

Frequency 9 12 5 45 16 13 



- The tree is called encoding tree and is present at the sending end.  

- The decoding tree is present at the receiving end which decodes the string 

to get corresponding message.  

- The cost of decoding is directly proportional to the number of bits in the 

transmitted code is equal to distance of external node from the root in the 

tree.  

- Example  

 

 

Arrange the message in ascending order according to their frequency 

 

Merge two minimum frequency message 

 

Merge two minimum frequency message 

 

 

Symbol A B C D E F 

Frequency 9 12 5 45 16 13 



 

Merge two minimum frequency message 

 

 

Merge two minimum frequency message 

 

 



Huffman Code for each symbol 

A= 0101 

B= 000 

C= 0100 

D= 1 

E= 011 

F= 001 

 

Q.5 

a) Explain Double Ended Queue. Write a C program to implement Double 

Ended Queue.                                                                                                  (10) 

Double Ended Queue  

 - It is also known as a head-tail linked list because elements can be added to or 

removed from either the front (head) or the back (tail) end. 

 - However, no element can be added and deleted from the middle 

 - In a dequeue, two pointers are maintained, LEFT and RIGHT, which point to 

either end of the dequeue. 

 - They include, 

 Input restricted dequeue 

 – In  this dequeue, insertions can be done only at one of the ends, while deletions 

can be done from both ends. The following operations are possible in an input 

restricted dequeues.  

  i) Insertion of an element at the rear end and        

  ii)Deletion of an element from front end       

  iii)Deletion of an element from rear end   

Output restricted deque 

- In this dequeue, deletions can be done only at one of the ends,while insertions 

can be done on both ends. 

 i) Deletion of an element at the front end       

 ii)Insertion of an element from rear end       



iii)Insertion of an element from rear end  

  

Operations on a dequeue 

i.initialize(): Make the queue empty.  

ii. empty(): Determine if queue is empty.  

iii. full(): Determine if queue is full. 

 iv. enqueueF(): Insert at element at the front end of the queue.  

v. enqueueR(): Insert at element at the rear end of the queue.  

vi. dequeueF(): Delete the front end  

vii. dequeueR(): Delete the rear end  

viii. print(): print elements of the queue. 

 - There are various methods to implement a dequeue. 

 - Using a circular array 

 - Using a linked list 

 - Using a cicular linked list  

- Using a doubly linked list  

- Using a doubly cirular linked list 

Program  

#include<stdio.h> 

#include<conio.h> 

#define MAX 10 

 

int deque[MAX]; 

int left=-1, right=-1; 

 

void insert_right(void); 

void insert_left(void); 

void delete_right(void); 

void delete_left(void); 

void display(void); 

 

int main() 



{ 

 int choice; 

 clrscr(); 

 do 

 { 

  printf("\n1.Insert at right "); 

  printf("\n2.Insert at left "); 

  printf("\n3.Delete from right "); 

  printf("\n4.Delete from left "); 

  printf("\n5.Display "); 

  printf("\n6.Exit"); 

  printf("\n\nEnter your choice "); 

  scanf("%d",&choice); 

  switch(choice) 

  { 

   case 1: 

    insert_right(); 

    break; 

   case 2: 

    insert_left(); 

    break; 

   case 3: 

    delete_right(); 

    break; 

   case 4: 

    delete_left(); 

    break; 

   case 5: 

    display(); 

    break; 

  } 

 }while(choice!=6); 

 getch(); 

 return 0; 

} 

void insert_right() 

{ 

 int val; 

 printf("\nEnter the value to be added "); 

 scanf("%d",&val); 

 if( (left==0 && right==MAX-1) || (left==right+1) ) 

 { 

  printf("\nOVERFLOW"); 



 } 

 if(left==-1)        //if queue is initially empty 

 { 

  left=0; 

  right=0; 

 } 

 else 

 { 

  if(right==MAX-1) 

   right=0; 

  else 

   right=right+1; 

 } 

 deque[right]=val; 

} 

void insert_left() 

{ 

 int val; 

 printf("\nEnter the value to be added "); 

 scanf("%d",&val); 

 if( (left==0 && right==MAX-1) || (left==right+1) ) 

 { 

  printf("\nOVERFLOW"); 

 } 

 if(left==-1)        //if queue is initially empty 

 { 

  left=0; 

  right=0; 

 } 

 else 

 { 

  if(left==0) 

   left=MAX-1; 

  else 

   left=left-1; 

 } 

 deque[left]=val; 

} 

 

 

//-------DELETE FROM RIGHT------- 

void delete_right() 

{ 



 if(left==-1) 

 { 

  printf("\nUNDERFLOW"); 

  return; 

 } 

 printf("\nThe deleted element is %d\n", deque[right]); 

 if(left==right)          //Queue has only one element 

 { 

  left=-1; 

  right=-1; 

 } 

 else 

 { 

  if(right==0) 

   right=MAX-1; 

  else 

   right=right-1; 

 } 

} 

 

 

//-------DELETE FROM LEFT------- 

void delete_left() 

{ 

 if(left==-1) 

 { 

  printf("\nUNDERFLOW"); 

  return; 

 } 

 printf("\nThe deleted element is %d\n", deque[left]); 

 if(left==right)          //Queue has only one element 

 { 

  left=-1; 

  right=-1; 

 } 

 else 

 { 

  if(left==MAX-1) 

   left=0; 

  else 

   left=left+1; 

 } 

} 



 

 

//-------DISPLAY------- 

void display() 

{ 

 int front=left, rear=right; 

 if(front==-1) 

 { 

  printf("\nQueue is Empty\n"); 

  return; 

 } 

 printf("\nThe elements in the queue are: "); 

 if(front<=rear) 

 { 

  while(front<=rear) 

  { 

   printf("%d\t",deque[front]); 

   front++; 

  } 

 } 

 else 

 { 

  while(front<=MAX-1) 

  { 

   printf("%d\t",deque[front]); 

   front++; 

  } 

  front=0; 

  while(front<=rear) 

  { 

   printf("%d\t",deque[front]); 

   front++; 

  } 

 } 

 printf("\n"); 

} 

 

Output: 

1.Insert at right 

2.Insert at left 

3.Delete from right 

4.Delete from left 



5.Display 

6.Exit 

 

 

 

b) Given the postorder and inorder traversal of binary tree, construct the   

    original tree:                                                                                               (10) 

      Postorder: D E F B G L J K H C A 

      Inorder: D B F E A G C L J H K 

 Construction of Tree:  

  

Step1: Select last element from the postorder as root node. So element 

A becomes root node. Divide the inorder into left and right with respect 

to root node A.  

  
Step 2: Traverse element D B F E from postorder as B comes in last B 

becomes child node of A and similarly traverse G C L J H K in postorder  

C comes at last C becomes child node of A. Again with respect to B and 

C divide element into left and right as shown below  

  
Step 3: As D is single it becomes child node of B and for left node of B 

Traverse F E in postorder F comes at last so F becomes child node of 

B. similarly, G and H become child node of C as shown below.  



  
Step 4: As E is single it becomes child node of F. Traverse L J which is 

left element of node H in postorder as J comes last J becomes child node 

of H as K is single it becomes another child node.  

  
Step 5: As L is simgle it becomes child node of J  

  
Original Tree  

 

 

Q.6 Explain following with suitable example (any two)                             (20)                                      

  I.      B- tree and Splay tree 

 B- Tree 



->A B-tree is a method of placing and locating files (called records or keys) in a 

database.  

->The B-tree algorithm minimizes the number of times a medium must be 

accessed to locate a desired record, thereby speeding up the process.  

->Properties:  

1. All the leaf nodes must be at same level.  

2 . All nodes except root must have at least [m/2]-1 keys and maximum of m-1 

keys.  

3. All non leaf nodes except root (i.e. all internal nodes) must have at least m/2 

children.  

4.If the root node is a non leaf node, then it must have at least 2 children.  

5.A non leaf node with n-1 keys must have n number of children.  

6.All the key values within a node must be in Ascending Order.  

->example:  

 

 Splay Tree  

- A splay tree consists of a binary tree, with no additional fields.  

- When a node in a splay tree is accessed, it is rotated or ‘splayed’ to the root, 

thereby changing the structure of the tree.  

- Since the most frequently accessed node is always moved closer to the starting 

point of the search (or the root node), these nodes are therefore located faster. 

  

  

  

  

  

  

  

  

20   

14 , 7   
23 ,35, 44   

1 , 5   18 , 19   
21   36 , 40   50   

https://searchsqlserver.techtarget.com/definition/database
https://searchsqlserver.techtarget.com/definition/database
https://searchsqlserver.techtarget.com/definition/database
https://searchsqlserver.techtarget.com/definition/database
https://whatis.techtarget.com/definition/algorithm
https://whatis.techtarget.com/definition/algorithm
https://whatis.techtarget.com/definition/algorithm


- A simple idea behind it is that if an element is accessed, it is likely that it will 

be accessed again.  

- In a splay tree, operations such as insertion, search, and deletion are combined 

with one basic operation called splaying.  

- Splaying the tree for a particular node rearranges the tree to place that node at 

the root.  

- A technique to do this is to first perform a standard binary tree search for that 

node and then use rotations in a specific order to bring the node on top. 

Advantages and Disadvantages of Splay Trees  

- A splay tree gives good performance for search, insertion, and deletion 

operations.  

- This advantage centers on the fact that the splay tree is a self-balancing and a 

self-optimizing data structure.  

- Splay trees are considerably simpler to implement.  

- Splay trees minimize memory requirements as they do not store any 

bookkeeping data.  

- Unlike other types of self-balancing trees, splay trees provide good 

performance. 

  II.    Polynomial representation and addition using linked list. 

 Polynomial representation  

- Let us see how a polynomial is represented in the memory using a 

linked list.  

- Consider a polynomial 6x3 + 9x2 + 7x + 1. . Every individual term in 

a polynomial consists of two parts, a coefficient and a power.  

- Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, 

and 0 as their powers respectively.  

- Every term of a polynomial can be represented as a node of the linked 

list. Figure shows the linked representation of the terms of the above 

polynomial.  

  
Figure.  Linked representation of a polynomial  

- Now that we know how polynomials are represented using nodes of a 

linked list.  



- Example:  

Input:  

1st number = 5x^2 + 4x^1 + 2x^0 

2nd number = 5x^1 + 5x^0  

Output:  

5x^2 + 9x^1 + 7x^0  

Input:  

1st number = 5x^3 + 4x^2 + 2x^0 

2nd number = 5x^1 + 5x^0 

 Output:  

5x^3 + 4x^2 + 5x^1 + 7x^0  

  

 

  III.  Topological Sorting 

• Topological sort of a directed acyclic graph (DAG) G is defined as a linear 

ordering of its nodes in which each node comes before all nodes to which 

it has outbound edges. Every DAG has one or more number of topological 

sorts.  

• A topological sort of a DAG G is an ordering of the vertices of G such that 

if G contains an edge (u, v), then u appears before v in the ordering  

• Note that topological sort is possible only on directed acyclic graphs that 

do not have any cycles.  

• For a DAG that contains cycles, no linear ordering of its vertices is 

possible.  

• In simple words, a topological ordering of a DAG G is an ordering of its 

vertices such that any directed path in G traverses the vertices in increasing 

order.  

• Topological sorting is widely used in scheduling applications, jobs, or 

tasks. The jobs that have to be completed are represented by nodes, and 

there is an edge from node u to v if job u must be completed before job v 

can be started.  

• A topological sort of such a graph gives an order in which the given jobs 

must be performed.  

• The two main steps involved in the topological sort algorithm include:  

1.Selecting a node with zero in-degree  



2.Deleting N from the graph along with its edges  

• Algorithm For topological Sorting  

Step 1: Find the in-degree INDEG(N) of every node in the graph  

Step 2: Enqueue all the nodes withazero in-degree  

Step 3: Repeat Steps4and5until the QUEUE is empty  

Step 4: Remove the front nodeNof the QUEUE by setting  

FRONT=FRONT+1  

Step 5: Repeat for each neighbourMof node N: a) Delete the edge from N        

to M by setting INDEG(M)=INDEG(M)-1 b) IF INDEG(M) =,then 

Enqueue M, that is, addMto the rear of the queue [END OF INNER  

LOOP] [END OF LOOP]  

Step 6: Exit • 

Example:  

  
Topological sort can be given as:  

• A, B, C, D, E • A, B, C, E, D • A, C, B, D, E  

• A, C, B, E, D  

 



DATA STRUCTURES 

( MAY 2019) 

Q.1 

(a) Explain Linear and Non-Linear data structures.                    (5) 

➔Linear and Non-linear Structures 

Linear: If the elements of a data structure are stored in a linear or 

sequential order, then it is a linear data structure. Examples include 

arrays, linked lists, stacks, and queues. Linear data structures can be 

represented in memory in two different ways. One way is to have to a 

linear relationship between elements by means of sequential memory 

locations. The other way is to have a linear relationship between 

elements by means of links. 

Example: 

1.Linked Lists 

Fig.1 

Simple Linked List 

2. Stacks 

A AB ABC ABCD ABCDE 
   

0            1          2           3             TOP=4        5            6         7 

Fig.2 Array representation of a stack 

Non-Linear: if the elements of a data structure are not stored in a      

sequential order, then it is a non-linear data structure. The relationship       

of adjacency is not maintained between elements of a non-linear data      

structure. Examples include trees and graphs. 

Example: 

1. Trees 



 

2. Graphs 

 

(b) Explain Priority Queue with example.                                     (5) 

➔Priority Queue is an extension of queue with following properties. 

• Every item has a priority associated with it. 

• An element with high priority is dequeued before an element with low 

If two elements have the same priority, they are served according to their 

order in the queue. 

• A typical priority queue supports following operations. 

• insert(item, priority): Inserts an item with given priority. 

• getHighestPriority(): Returns the highest priority item. 

• deleteHighestPriority(): Removes the highest priority item. 

• When arrays are used to implement a priority queue, then a separate 

queue for each priority numberis maintained. Each of these queues will 

be implemented using circulararrays or circular queues. Every individual 

queue will have itsown FRONT and REAR pointers. 

• We use a  two-dimensional array for this purpose where each  queue 

wil be allocated the same amount of space. 

• FRONT[K] and REAR[K] contain the front and rear values of row K, 

where K is the priority number. 

 

 



Example: 

FRONT REAR 

3 3 

1 3 

4 5 

4 1 

1    2    3    4    5                                    1    2    3    4    5 

1                 A 1 A 

2    B    C    D    2 B   C   D 

3 E     F           3      R       E     F 

4    I                G     H 4 I                G    H 

Priority Queue matrix                           Priority Queue Matrix after insertion 

Of an element 

• To insert a new element with priority K in the priority queue, add the 

element at the rear endof row K, where K is the row number as well as 

the priority number of that element. 

• . In our priority queue, the firstnon-empty queue is the one with 

priority number 1 and the frontelement is A, so A will be deleted and 

processed ccfirst. 

(c) Write a Programe in ‘c’to impliment Quick sort.                 (10) 

Program: 

#include<stdio.h> 

#include<conio.h> 

void quicksort(int number[25],int first,int last) 

{ 

int i,j,pivot,temp; 

if(first<last) 

{ 

pivot=first; 

i=first; 

j=last; 

FRONT REAR 

3 3 

1 3 

4 1 

4 1 



while(i<j) 

{ 

while(number[i]<=number[pivot]&&i<last) 

i++; 

while(number[j]>number[pivot]) 

j--; 

if(i<j) 

{ 

temp=number[i]; 

number[i]=number[j]; 

number[j]=temp; 

 

} 

} 

temp=number[pivot]; 

number[pivot]=number[j]; 

number[j]=temp; 

quicksort(number,first,j-1); 

quicksort(number,j+1,last); 

} 

} 

int main() 

{ 

int i,count,number[25]; 

printf("How many elements are u going to enter?"); 

scanf("%d",&count); 

 



printf("enter %d element:",count); 

for(i=0;i<count;i++) 

scanf("%d",&number[i]); 

quicksort(number,0,count-1); 

printf("Order of sorted elements"); 

for(i=0;i<count;i++) 

scanf("%d",&number[i]); 

return 0; 

} 

OUTPUT: 

How many elements are u going to enter?4 

enter 4 element:34 

56 

22 

31 

Order of sorted elements 

22 

31 

34 

56 

 

 

Q.2 

(a) Write a programe to impliment Circular Lined list Provide 

the following oparation:                                                                 (10) 

(i) Insert a node 

(ii) Delete a node 

(iv) Display the list 

Program: 

#include <stdio.h> 

#include <string.h> 



#include <stdlib.h> 

#include <stdbool.h> 

struct node 

{ 

int data; 

int key; 

struct node *next; 

}; 

struct node *head = NULL; 

struct node *current = NULL; 

bool isEmpty() 

{ 

return head == NULL; 

} 

int length() 

{ 

int length = 0; 

if(head == NULL) 

{ 

return 0; 

} 

current = head->next; 

while(current != head) 

{ 

length++; 

current = current->next; 

} 

return length; 

} 



void insertFirst(int key, int data) 

{ 

struct node *link = (struct node*) malloc(sizeof(struct node)); 

link->key = key; 

link->data = data; 

if (isEmpty()) 

{ 

head = link; 

head->next = head; 

} 

else 

{ 

link->next = head; 

head = link; 

} 

} 

struct node * deleteFirst() 

{ 

struct node *tempLink = head; 

if(head->next == head) 

{ 

head = NULL; 

return tempLink; 

} 

head = head->next; 

return tempLink; 

} 

void printList() 

{ 



struct node *ptr = head; 

printf("\n[ "); if(head != NULL) 

{ 

while(ptr->next != ptr) 

{ 

printf("(%d,%d) ",ptr->key,ptr->data); 

ptr = ptr->next; 

} 

} 

printf(" ]"); 

} 

main() 

{ 

insertFirst(1,10); 

insertFirst(2,20); 

insertFirst(3,30); 

insertFirst(4,1); 

insertFirst(5,40); 

insertFirst(6,56); 

printf("Original List: "); 

printList(); 

while(!isEmpty()) 

{ 

struct node *temp = deleteFirst(); 

printf("\nDeleted value:"); 

printf("(%d,%d) ",temp->key,temp->data); 

} 

printf("\nList after deleting all items: "); 

printList(); 



} 

 

OUTPUT: 

Original List: 

 

[ (6,56) (5, 40) (4,1) (3,30) (2,20)  (1,10) ] 

 

Deleted value: (6,56) 

 

Deleted value: (5, 40) 

 

Deleted value: (4,1) 

 

Deleted value:  (3,30) 

 

Deleted value: (2,20) 

 

Deleted value: (1,10) 

 

nList after deleting all items: 

[   ] 

 
 

(b) Explain Threaded Binary tree in detail                                 (10) 

➔ Threaded Binary Tree: 

• A threaded binary tree is the same as that of a binary tree but with a 

difference in storing the NULL pointers. 

• In the linked representation, a number of nodes contain a NULL pointer, 

either in their left or right fields or in both. 

• For example, the NULL entries can be replaced to store a pointer to the 

in-order predecessor or the in-order successor of the node. 

• These special pointers are called threads and binary trees containing 

threads are called threaded trees. 

• There are many ways of threading a binary tree and each type may vary 

according to the way the tree is traversed. 

• 1. One-way Threading 

2. Two-way Threading 

 



 

Fig1. Binary tree with one-way threading 

 

 

Fig2. Binary tree with two-way threading 

• Apart from this, a threaded binary tree may correspond to one-way 

threading or a twoway threading. 

• In one-way threading, a thread will appear either in the right field or the 

left field of the node. 

• A one-way threaded tree is also called a single-threaded tree. 

• one-way threaded tree is called a rightthreaded binary tree. 

• In a two-way threaded tree, also called a double-threaded tree, threads 

will appear in both the left and the right field of the node. 

• A two-way threaded binary tree is also called a fully threaded binary tree. 

• Advantages of Threaded Binary Tree: 

1. It enables linear traversal of elements in the tree. 

2. Linear traversal eliminates the use of stacks which in turn 

consume a lot of memory space and computer time. 

3. It enables to find the parent of a given element without explicit use 

of parent pointers. 



4. Since nodes contain pointers to in-order predecessor and 

successor, the threaded tree enables forward and backward 

traversal of the nodes as given by in-order fashion. 

• we see the basic difference between a binary tree and a threaded binary 

tree is that in binary trees a node stores a NULL pointer if it has no child 

and so there is no way to traverse back. 

Q.3 

(a) Explain Huffman Encoding with suitable example              (10) 

Huffman Code: 

- Huffman code is an application of binary trees with minimum weighted 

external path length is to obtain an optimal set for messages M1, M2, …Mn 

- Message is converted into a binary string. 

- Huffman code is used in encoding that is encrypting or compressing the text 

in the WSSS communication system. 

- It use patterns of zeros and ones in communication system these are used at 

sending and receiving end. 

- suppose there are n standard message M1, M2, ……Mn. Then the frequency 

of each message is considered, that is message with highest frequency is 

given priority for the encoding. 

- The tree is called encoding tree and is present at the sending end. - The 

decoding tree is present at the receiving end which decodes the string to get 

corresponding message. 

- The cost of decoding is directly proportional to the number of bits in the 

transmitted code is equal to distance of external node from the root in the 

tree.      Example 

 

Symbol A B C D E 

Frequency 24 12 10 8 8 

 

Arrange the message in ascending order according to their frequency 

 
Merge two minimum frequency message 



 
Rearrange in ascending order 

 
Merge two minimum frequency message 

 
Rearrange in ascending order 

 

Merge two minimum frequency message 

 
Again Rearrange in ascending order 



 
Merge two minimum frequency message 

 
Huffman code 

A = 0 

B = 111 

C = 110 

D= 100 

E = 101 

 

 

(b) Write a program in ‘C’ to check for balanced parenthesis in 

an   expression using stack.                                                           (10) 

➔ Program 

#include <stdio.h> 

#include <string.h> 

#define MAXSIZE 100 

#define TRUE 1 

#define FALSE 0 

struct Stack { 

int top; 



int array[MAXSIZE]; 

} st; 

void initialize() { 

st.top = -1; 

} 

int isFull() { 

if(st.top >= MAXSIZE-1) 

return TRUE; 

else 

return FALSE; 

} 

int isEmpty() { 

if(st.top == -1) 

return TRUE; 

else 

return FALSE; 

} 

void push(int num) { 

if (isFull()) 

printf("Stack is Full...\n"); 

else { 

st.array[st.top + 1] = num; 

st.top++; 

} 

} 

int pop() { 

if (isEmpty()) 

printf("Stack is Empty...\n"); 

else { 

st.top = st.top - 1; 

return st.array[st.top+1]; 

} 

} 

int main() { 

char inputString[100], c; 

int i, length; 

initialize(); 

printf("Enter a string of paranthesis\n"); 

gets(inputString); 

length = strlen(inputString); 

for(i = 0; i < length; i++){ 

if(inputString[i] == '{') 

push(inputString[i]); 



else if(inputString[i] == '}') 

pop(); 

else { 

printf("Error : Invalid Character !! \n"); 

return 0; 

} 

} 

 

if(isEmpty()) 

printf("Valid Paranthesis Expression\n"); 

else 

printf("InValid Paranthesis Expression\n"); 

 

return 0; 

} 

 

OUTPUT: 

Enter a string of paranthesis 

{{{}{}{{}}{}}} 

Valid Paranthesis Expression 

 

Enter a string of paranthesis 

{{{}{}{}}}{}{}{{} 

InValid Paranthesis Expression 

 

Q.4 

(a) Write a program in ‘C’ to implement  Queue using array. (10) 

➔ Program 

#include<stdio.h> 

#include<conio.h>  

#define size 5 

int q[size],front=-1,rear=-1,i,element; 

void insert(int ele); 

int del(); 

void disp(); 



 

void main() 

{   int 

ch,ele;   

clrscr(); 

printf("\t ***** Main Menu *****"); 

printf("\n 1. insert \n2.delete \n3.display 

\n4.Exit\n");  do  { 

printf("\n Enter your choice: \n \n"); 

scanf("%d",&ch);  

switch(ch) 

{ 

case 1:printf("\n Enter Element to Insert \n "); 

scanf("%d",&ele)

;    insert(ele);    

disp();    break; 

case 2:ele=del(); 

scanf("\n %d is the deleted element \n ",ele); 

disp();    

break; 

case 3:disp(); 

break; 

case 4:break; 

default:printf(" \n Invalid Statement \n"); 

} 

} 

while(ch!=4); getch(); 

} 

void insert(int ele) 

{ 

if(front==-1 && rear==-1) 



{ 

front=rear=0;    q[rear]=ele; 

} 

else if((rear+1)%size==front) 

{ 

printf("\n  Queue is Full \n"); 

}  

else 

{  

rear=(rear+1)%size;  

q[rear]=ele; 

} 

} 

int del() 

{ 

if(rear==-1 && front==-1) 

{ 

printf("\n Queue is Empty \n"); 

} 

else if(rear==front) 

{  rear=-

1;     

front=-1; 

printf("\n Queue is Empty \n"); 

}  

else  

{ 

element=q[front];    front=(front+1)%size; 

}  return 

element; 



} 

void disp() 

{ 

if(rear==-1 && front==-1) 

{ 

printf("\n Queue is Empty \n"); 

}  

else  

{ 

for(i=front;i<(rear+1)%size;i++) 

{ 

printf("\t %d",q[i]); 

} 

} 

} 

OUTPUT: 

***** Main Menu ***** 

1. insert 

2.delete 

3.display 

4.Exit 

Enter your choice: 1 

Enter Element to Insert: 23 

Enter your choice: 1 

Enter Element to Insert: 45 

 

Enter your choice: 2 

23 is the deleted element 

Enter your choice: 3 



45 

Enter your choice: 4 

 

 

(b) Explain different cases for deletion of a node in binary search 

tree. Write function for each case                                                 (10) 

➔  When we delete a node, three possibilities arise. 

1) Node to be deleted is leaf: Simply remove from the tree. 

 

2) Node to be deleted has only one child: Copy the child to the node and delete 

the child 

 

3) Node to be deleted has two children: Find inorder successor of the node. 

Copy contents of the inorder successor to the node and delete the inorder 

successor. Note that inorder predecessor can also be used. 

 

 



 

• The important thing to note is, inorder successor is needed only when 

right child is not empty. In this particular case, inorder successor can be 

obtained by finding the minimum value in right child of the node. 

• C Function: 

void deletion(Node*& root, int item) 

{ 

Node* parent = NULL; 

Node* cur = root; 

          search(cur, item, parent); 

          if (cur == NULL) 

return; 

          if (cur->left == NULL && cur->right == NULL) 

{ 

if (cur != root) 

{ 

if (parent->left == cur) 

parent->left = NULL; 

else 

parent->right = NULL; 

} 

else 

root = NULL; 

          free(cur); 

} 

else if (cur->left && cur->right) 

{ 

Node* succ  = findMinimum(cur- >right); 

          int val = succ->data; 

         deletion(root, succ->data); 

         cur->data = val; 

} 

 



else 

    { 

Node* child = (cur->left)? Cur- >left: cur->right; 

if (cur != root) 

{ 

if (cur == parent->left) 

parent->left = child; 

else 

parent->right = child; 

} 

else 

root = child; 

free(cur); 

} 

} 

 

Node* findMinimum(Node* cur) 

{ 

while(cur->left != NULL) { 

cur = cur->left; 

} 

return cur; 

} 

 

Q.5 

(a) Write a program in ‘C’ to implement Stack using Linked-List. 

Perform the following operation: 

(i) Push 

(ii) Pop 

(iii) Peek 

(iii) Display the stack contents                                                     (10) 

PROGRAM: 

#include <stdio.h> 

#include < stdlib.h> 

struct node 



{ 

int info; 

struct node *ptr; 

}*top,*top1,*temp; 

int topelement(); 

void push(int data); 

void pop(); 

void display(); 

void peek(); 

void create(); 

int count = 0; 

void main() 

{ 

int no, ch, e; 

printf("\n 1 - Push"); 

printf("\n 2 - Pop"); 

printf("\n 3 - Peek"); 

printf("\n 4 - Exit"); 

printf("\n 5 - Dipslay"); 

create(); 

while (1) 

{ 

printf("\n Enter choice : "); 

scanf("%d", &ch); 

switch (ch) 

{ 

case 1: 

printf("Enter data : "); 

scanf("%d", &no); 



push(no); 

break; 

case 2: 

pop(); 

break; 

case 3: 

if (top == NULL) 

printf("No elements in stack"); 

else 

{ 

e = topelement(); 

printf("\n Top element : %d", e); 

} 

break; 

case 4: 

exit(0); 

case 5: 

display(); 

break; 

default : 

printf(" Wrong choice, Please enter correct choice  "); 

break; 

} 

} 

} 

void create() 

{ 

top = NULL; 

} 



void push(int data) 

{ 

if (top == NULL) 

{ 

top =(struct node *)malloc(1*sizeof(struct node)); 

top->ptr = NULL; 

top->info = data; 

} 

else 

{ 

temp =(struct node *)malloc(1*sizeof(struct node)); 

temp->ptr = top; 

temp->info = data; 

top = temp; 

} 

count++; 

} 

void display() 

{ 

top1 = top; 

if (top1 == NULL) 

{ 

printf("Stack is empty"); 

return; 

} 

while (top1 != NULL) 

{ 

printf("%d ", top1->info); 

top1 = top1->ptr; 



} 

} 

void peek() 

{ 

top1 = top; 

if (top1 == NULL) 

{ 

printf("\n Error : Trying to pop from empty stack"); 

return; 

} 

else 

top1 = top1->ptr; 

printf("\n Popped value : %d", top->info); 

free(top); 

top = top1; 

count--; 

} 

int topelement() 

{ 

return(top->info); 

} 

 

 

 

 

 

 

 



OUTPUT: 

1- Push 

2- Pop 

3- Peek 

4- Display 

5- Exit 

Enter choice : 1 

Enter data : 32 

 

Enter choice : 1 

Enter data : 34 

 

Enter choice : 2 

Popped value : 34 

 

Enter choice : 3 

Peek element : 32 

 

Enter choice : 4 

32 

 

Enter choice : 5 

 

 

(b)  Explain Depth First search (DFS) Traversal with an example. 

Write the recursive function for DFS                                           (10) 

➔Depth-first Search 

- The depth-first search algorithm (Fig. 13.22) progresses by 

expanding the starting node of G and then going deeper and 

deeper until the goal node is found, or until a node that has no 

children is encountered. 

- When a dead-end is reached, the algorithm backtracks, returning 

to the most recent node that has not been completely explored. 

- depth-first search begins at a starting node A which becomes the 

current node. 

- Then, it examines each node N along a path P which begins at A. 

- That is, we process a neighbour of A, then a neighbour of 

neighbour of A, and so on. 

Algorithm for depth-first search 



- Step 1: SET STATUS=1(ready state) for each node in G 

- Step 2: Push the starting nodeAon the stack and set its 

STATUS=2(waiting state) 

- Step 3: Repeat Steps4and5until STACK is empty 

- Step 4: Pop the top node N. Process it and set its 

STATUS=3(processed state) 

- Step 5: Push on the stack all the neighbours ofNthat are in the 

ready state (whose STATUS=1) and set their STATUS=2(waiting 

state) [END OF LOOP] 

- Step 6: EXIT 

Example: 

 

• Adjacency list for G: 

o A: B, C, D 

o B: C, E 

o C: E 

o D: C, F 

o E: A 

o F: C 

o G: D, F, H 

o H: C 

 

 

Recursive Function: 

void Graph::DFSUtil(int v, bool visited[]) 

{ 

visited[v] = true; 

cout << v << " "; 

 

// Recur for all the vertices adjacent 

// to this vertex 



list<int>::iterator i; 

for (i = adj[v].begin(); i != adj[v].end(); ++i) 

if (!visited[*i]) 

DFSUtil(*i, visited); 

} 

 

// DFS traversal of the vertices reachable from v. 

// It uses recursive DFSUtil() 

void Graph::DFS(int v) 

{ 

// Mark all the vertices as not visited 

bool *visited = new bool[V]; 

for (int i = 0; i < V; i++) 

visited[i] = false; 

 

// Call the recursive helper function 

// to print DFS traversal 

DFSUtil(v, visited); 

} 

 

Q.6. Write Short notes on (any two)                                            (20)         

(a)  Application of Linked-List –Polynomial addition 

➔ Application of Linked list 

- Linked lists can be used to represent polynomials and the different 

operations that can be performed on them 

- we will see how polynomials are represented in the memory using 

linked lists. 

 

1. Polynomial representation 

- Let us see how a polynomial is represented in the memory using a 

linked list. 

- Consider a polynomial 6x3 + 9x2 + 7x + 1. . Every individual term 

in a polynomial consists of two parts, a coefficient and a power. 

- Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, 

and 0 as their powers respectively. 

- Every term of a polynomial can be represented as a node of the 

linked list. Figure shows the linked representation of the terms of the 

above polynomial. 



 

Figure.  Linked representation of a polynomial 

- Now that we know how polynomials are represented using nodes of 

a linked list. 

- Example: 

Input: 

1st number = 5x^2 + 4x^1 + 2x^0 

2nd number = 5x^1 + 5x^0 

Output: 

5x^2 + 9x^1 + 7x^0 

Input: 

1st number = 5x^3 + 4x^2 + 2x^0 

2nd number = 5x^1 + 5x^0 

Output: 

5x^3 + 4x^2 + 5x^1 + 7x^0 

 

(b) Collision Handling technique 

➔ There are mainly two methods to handle collision: 

       1) Separate Chaining 

       2) Open Addressing 

1. Separate Chaining 

• The idea is to make each cell of hash table point to a linked list of records 

that have same hash function value. 

• To handle collisions, the hash table has a technique known as separate 

chaining. Separate chaining is defined as a method by which linked lists 

of values are built in association with each location within the hash table 

when a collision occurs. 

• The concept of separate chaining involves a technique in which each 

index key is built with a linked list. This means that the table's cells have 

linked lists governed by the same hash function. 

• Let us consider a simple hash function as “key mod 7” and sequence of 

keys as 50, 700, 76, 85, 92, 73, 101. 



 

• Advantages: 

1) Simple to implement. 

2) Hash table never fills up, we can always add more elements to chain. 

3) Less sensitive to the hash function or load factors. 

4) It is mostly used when it is unknown how many and how frequently 

keys may be inserted or deleted. 

2. Open Addressing 

• Like separate chaining, open addressing is a method for handling 

collisions. 

• In Open Addressing, all elements are stored in the hash table itself. 

• So at any point, size of the table must be greater than or equal to the total 

number of keys 

• In such a case, we can search the next empty location in the array by 

looking into the next cell until we find an empty cell. 

• This technique is called linear probing. 

a) Linear Probing: In linear probing, we linearly probe for next slot. For 

example, typical gap between two probes is 1 as taken in below example 

also. 

let hash(x) be the slot index computed using hash function and S be the 

table size 



a) Qudratic Probing: Quadratic probing operates by taking the original 

hash index and adding successive values of an arbitrary quadratic 

polynomial until an open slot is found. 

• Let us consider a simple hash function as “key mod 7” and sequence of 

keys as 50, 700, 76, 85, 92, 73, 101. 

 

(c) Expression Tree 

➔ Expression Tree 

• Expression tree is a binary tree in which each internal node corresponds 

to operator and each leaf node corresponds to operand. 

• A binary expression tree is a specific kind of a binary tree used to 

represent expressions. 

• The leaves of the binary expression tree are operands, such as constants 

or variable names, and the other nodes contain operators. 

• Assume the set of possible operators are {'+', '-', '*', '/'}. The set of 

possible operands are ['0' - '9']. See the figure below, which is the binary 

expression tree for the expression (in in-fix notation): (((2+3)*9)+7). 

 

https://en.wikipedia.org/wiki/Quadratic_polynomial
https://en.wikipedia.org/wiki/Quadratic_polynomial


 
• Construction of Expression Tree: 

Now For constructing expression tree we use a stack. We loop through 

input expression and do following for every character. 

1) If character is operand push that into stack 

2) If character is operator pop two values from stack make them its child 

and push current node again. 

At the end only element of stack will be root of expression tree 

• Algorithm For Expression tree 

Let t be the expression tree 

If  t is not null  then 

If  t.value is operand then 

Return  t.value 

A = solve( t.left ) 

B =solve( t.right ) 

// calculate applies operate ‘t.value’ 

// on A and B, and returns value 

Return calculate (A, B, t.value) 

(d) Topological Sorting 

• Topological sort of a directed acyclic graph (DAG) G is defined as a 

linear ordering of its nodes in which each node comes before all nodes to 

which it has outbound edges. Every DAG has one or more number of 

topological sorts. 

• A topological sort of a DAG G is an ordering of the vertices of G such 

that if G contains an edge (u, v), then u appears before v in the ordering 

• Note that topological sort is possible only on directed acyclic graphs that 

do not have any cycles. 



• For a DAG that contains cycles, no linear ordering of its vertices is 

possible. 

• In simple words, a topological ordering of a DAG G is an ordering of its 

vertices such that any directed path in G traverses the vertices in 

increasing order. 

• Topological sorting is widely used in scheduling applications, jobs, or 

tasks. The jobs that have to be completed are represented by nodes, and 

there is an edge from node u to v if job u must be completed before job v 

can be started. 

• A topological sort of such a graph gives an order in which the given jobs 

must be performed. 

• The two main steps involved in the topological sort algorithm include: 

1.Selecting a node with zero in-degree 

2.Deleting N from the graph along with its edges 

• Algorithm For topological Sorting 

Step 1: Find the in-degree INDEG(N) of every node in the graph 

Step 2: Enqueue all the nodes withazero in-degree 

Step 3: Repeat Steps4and5until the QUEUE is empty 

Step 4: Remove the front nodeNof the QUEUE by setting 

FRONT=FRONT+1 

Step 5: Repeat for each neighbourMof node N: a) Delete the edge from N        

to M by setting INDEG(M)=INDEG(M)-1 b) IF INDEG(M) =,then 

Enqueue M, that is, addMto the rear of the queue [END OF INNER 

LOOP] [END OF LOOP] 

Step 6: Exit 

• Example: 

 
Topological sort can be given as: 

• A, B, C, D, E 

• A, B, C, E, D 

• A, C, B, D, E 

• A, C, B, E, D 



DATA STRUCTURES 

( MAY 2018 ) 

Q.1 

 (a) Explain different types of data structure with example.                     (05) 

 Data structures are generally categorized into two classes:  

1. Primitive Non-primitive Data Structure  

Primitive: Primitive data structures are the fundamental data types 

which are supported by a programming language. Some basic data types 

are integer, real, character, and boolean. The terms ‘data type’, ‘basic 

data type’, and ‘primitive data type’ are often used interchangeably.  

Non-primitive: Non-primitive data structures are those data structures 

which are created using primitive data structures. Examples of such data 

structures include linked lists, stacks, trees, and graphs. Non-primitive 

data structures can further be classified into two categories: linear and 

non-linear data structures 

2. Linear and Non-linear Structures 

Linear: If the elements of a data structure are stored in a linear or 

sequential order, then it is a linear data structure. Examples include 

arrays, linked lists, stacks, and queues. Linear data structures can be 

represented in memory in two different ways. One way is to have to a 

linear relationship between elements by means of sequential memory 

locations. The other way is to have a linear relationship between 

elements by means of links. 

Example: 

1.Linked Lists 

 

Fig.1 Simple Linked List 

               2. Stacks 

 

                       0            1          2           3             TOP=4        5            6         7 

Fig.2 Array representation of a stack 

     Non-Linear: if the elements of a data structure are not stored in a 

     sequential order, then it is a non-linear data structure. The relationship  

     of adjacency is not maintained between elements of a non-linear data 

     structure. Examples include trees and graphs. 

           

3  4 X 2  1  

A AB ABC ABCD ABCDE    



             Example: 

             1. Trees 

 

            2. Graphs 

 

 (b) what is graph? Explain methods to represent graph.                          (05) 

 Graph is a data structure that consists of following two components:  

1. A finite set of vertices also called as nodes.  

2. A finite set of ordered pair of the form (u, v) called as edge. The pair is 

ordered because (u, v) is not same as (v, u) in case of a directed 

graph(digraph). The pair of the form (u, v) indicates that there is an edge 

from vertex u to vertex v. The edges may contain weight/value/cost.  

Following is an example of undirected graph with 5 vertices.  

  
 

           There are two most commonly used representations of a graph.  



 

1. Adjacency Matrix  

 Adjacency Matrix is a 2D array of size V x V where V is the number  

of vertices in a graph.   

 Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is 

an edge from vertex i to vertex j.   

 Adjacency matrix for undirected graph is always symmetric.  

 Adjacency Matrix is also used to represent weighted graphs.  - If 

adj[i][j] = w, then there is an edge from vertex i to vertex j with 

weight w.  

 Following is adjacency matrix representation of the above graph.  

  

  0  1  2  3  4  

0  0  1  0  0  1  

1  1  0  1  1  1  

2  0  1  0  1  0  

3  0  1  1  0  1  

4  1  1  0  1  0  

  

2. Adjacency List  

 An array of lists is used. Size of the array is equal to the number of 

vertices.   

 Let the array be array[]. An entry array[i] represents the list of 

vertices adjacent to the ith vertex.   

 This representation can also be used to represent a weighted graph. 

 The weights of edges can be represented as lists of pairs.   

 Following is adjacency list representation of the above graph.  

  
  

  

 



 (c) write a program in ‘C’ to implement Merge sort.                       (10) 

 PROGRAM 

#include <stdio.h> 

#include <conio.h>  

#define size 100 

void merge(int a[], int, int, int); 

void merge_sort(int a[],int, int);  

 

void main() 

{ 

int arr[size], i, n; printf("\n Enter the number of elements in the array : "); 

scanf("%d", &n);  

printf("\n Enter the elements of the array: "); 

for(i=0;i<n;i++) 

{ 

scanf("%d", &arr[i]); 

} 

merge_sort(arr, 0, n-1); 

printf("\n The sorted array is: \n"); 

 for(i=0;i<n;i++) 

printf(" %d\t", arr[i]); 

 getch(); 

}  

 

void merge(int arr[], int beg, int mid, int end) 

{ 

int i=beg, j=mid+1, index=beg, temp[size], k; 

while((i<=mid) && (j<=end)) 

{  

if(arr[i] < arr[j])  

{ 

temp[index] = arr[i]; 

i++;   

}   

Else 

{ 

temp[index] = arr[j];  

j++;   

}  

index++;  

}  

if(i>mid) 



{  

while(j<=end)  

{ 

temp[index] = arr[j];  

j++; 

index++; 

} 

}  

Else 

{ 

while(i<=mid)  

{  

temp[index] = arr[i]; 

i++; 

index++; 

} 

} 

for(k=beg;k<index;k++) 

arr[k] = temp[k];  

}  

void merge_sort(int arr[], int beg, int end) 

{ 

int mid; 

if(beg<end) 

{  

mid = (beg+end)/2;  

merge_sort(arr, beg, mid);   

merge_sort(arr, mid+1, end);  

merge(arr, beg, mid, end); 

} 

} 

 

 

 

 

OUTPUT: 

Enter the number of elements in the array :5 

Enter the elements of the array: 12  45   32   67   88 

The sorted array is: 12  32 45  67 88 

 



Q.2 

 (a)  Write a program in ‘C’ to implement QUEUE ADT using Linked-   

         List.Perform the following Operation.                                                (10)                                            

         i) Insert node in the queue. 

         ii) Delete node from the list. 

         iii) display queue elements. 

 

 PROGRAM 

#include<stdio.h> 

#include<conio.h> 

#include<malloc.h> 

typedef struct node 

{ 

int data; 

struct node *link; 

} 

NODE; 

NODE *front=NULL,*rear=NULL,*s,*ptr,*disply; 

int main() 

{ 

int no,item; char c; 

printf("\n\tPROGRAM QUEUE USING LINKEDLIST"); 

do 

{ 

printf("\t\t\t\tMENU"); 

printf("\n\t\t1.INSERT\n\t\t2.DELETE\n\t\t3.DISPLAY\n\t\t4.EXIT\n\t\t

Enter your choice: "); 

scanf("%d",&no); 

if(no==1) 

{ 

ptr=(NODE*)malloc(sizeof(NODE)); 

printf("\t\tEnter the element: "); 

scanf("%d",&ptr->data); 

ptr->link=NULL; 

if(rear==NULL) 

{ 

front=ptr; rear=ptr; 

} 

else 

{ 

rear->link=ptr; rear=ptr; 

} 



} 

if(no==2) 

{ 

if(front==NULL) 

printf("\t\tStack is empty\n"); 

else 

{ 

s=front; 

printf("\t\tDeleted Element is %d\n",front->data); 

front=front->link; 

free(s); 

if(front==NULL) 

rear=NULL; 

} 

} 

if(no==3) 

{ 

if(front==NULL) 

printf("\t\tQueue is empty\n"); 

else 

{ 

printf("\t\tQueue elements are"); 

disply=front; while(disply!=NULL) 

{ 

printf(" %d",disply->data); 

disply=disply->link; 

} 

("\n"); 

} 

} 

if(no==4) 

break; 

printf("\t\tDo you want to continue(y/n) "); 

scanf(" %c",&c); 

} 

while(c=='y'||c=='Y'); 

getch(); 

} 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT: 

PROGRAM QUEUE USING LINKEDLIST 

 MENU 

1.INSERT 

2.DELETE 

3.DISPLAY 

4.EXIT 

Enter your choice:1 

Enter the element:23 

Do you want to continue(y/n): y 

Enter your choice:1 

Enter the element:44 

Do you want to continue(y/n): y 

Enter your choice:2 

Deleted Element is 23 

Do you want to continue(y/n): y 

Enter your choice:3 

Queue elements are 44 

Do you want to continue(y/n): n 

 



(b) Using Linear probing and Quadratic probing, insert following values in   

     the hash table of size 10. Show how many collisions occur in each iteration  

     28, 55, 71, 67, 11, 10, 90, 44.                                                                      (10) 

  
     1. Linear Probing 

Number of collision=2 

    2. Quadratic Probing 

 Empty 

table 

After 

28 

After 

55 

After 

71 

After 

67 

After 

11 

After 

10 

After 

90 

After 

44 

 

0       10 10 10  

1    71 71 71 71 71 71  

2      11 11 11 11 * 

3        90 90 * 

4           

5   55 55 55 55 55 55 55  

6           

7     67 67 67 67 67  

8  28 28 28 28 28 28 28 28  

9         44 * 

 

 Empty 

Table 

After 

28 

After 

55 

After 

71 

After 

67 

After 

11 

After 

10 

After 

90 

After 

44 

0       10 10 10 

1    71 71 71 71 71 71 

2      11 11 11 11 

3        90 90 

4         44 

5   55 55 55 55 55 55 55 

6          

7     67 67 67 67 67 

8 28 28 28 28 28 28 28 28 28 

9          



Q.3 

(a) Write a program in ‘C’ to evaluate postfix expression using STACK 

     ADT.                                                                                                           (10) 

 Program 

#include <stdio.h> 

#include <conio.h> 

#include <ctype.h> 

#define MAX 100  

float st[MAX]; 

int top=–1; 

void push(float st[], float val); 

float pop(float st[]); 

float evaluatePostfixExp(char exp[]);  

int main() 

 { 

float val; 

char exp[100];  

clrscr();  

printf("\n Enter any postfix expression : "); 

gets(exp); 

val = evaluatePostfixExp(exp); 

printf("\n Value of the postfix expression = %.2f", val);  

getch();  

return 0; 

} 

float evaluatePostfixExp(char exp[]) 

{  

int i=0;  

float op1, op2, value;  

while(exp[i] != '\0') 

{  

if(isdigit(exp[i])) 

push(st, (float)(exp[i]–'0')); 

else 

{    

   op2 = pop(st); 

   op1 = pop(st); 

   switch(exp[i])  

  { 

            case '+':  

                    value = op1 + op2;  

                    break; 



            case '–': 

                    value = op1 – op2; 

                    break;  

            case '/':   

                     value = op1 / op2;  

                      break;   

            case '*':     

                      value = op1 * op2; 

                       break;    

            case '%':   

                 value = (int)op1 % (int)op2;  

                 break; 

} 

 push(st, value); 

  } 

  i++; 

 } 

 return(pop(st)); 

 } 

 void push(float st[], float val) 

{ 

 if(top==MAX–1) 

  printf("\n STACK OVERFLOW"); 

 else 

 { 

  top++;  st[top]=val; 

 }  

} 

float pop(float st[]) 

 {  

float val=–1; if(top==–1) 

  printf("\n STACK UNDERFLOW"); 

 else 

 {  

 val=st[top]; 

  top––;  

}  

return val; 

 } 

 

 

 

 



 

 

 

 

 

(b) Explain different types of tree traversals techniques with example. Also 

      write recursive   function for each traversal technique.                      (10) 

 TRAVERSING A BINARY TREE 

Traversing a binary tree is the process of visiting each node in the tree 

exactly once in a systematic way. 

 

1. Pre-order Traversal 

- To traverse a non-empty binary tree in pre-order, the following 

operations are performed recursively at each node. The algorithm works 

by: 

1. Visiting the root node. 

2. Traversing the left sub-tree, and finally  

3. Traversing the right sub-tree. 

- Example 

 
- The pre-order traversal of the tree is given as A, B, C. Root node 

first, the left sub-tree next, and then the right sub-tree. 

- Recursive Function 

Void preorder (node * T) /* address of the root node is passed in T 

*/ 

{ 

                      if (T! = NULL) 

                       { 

                              printf(“\n%d, T --> data); 

                              preorder( T -->left); 

                              preorder( T -->right); 

 

                       } 

} 

OUTPUT: 

Enter any postfix expression : 9 – ((3 * 4) + 8) / 4 

Value of the postfix expression 9 3 4 * 8 + 4 / – 

 



2. In-order Traversal 

- To traverse a non-empty binary tree in in-order, the following 

operations are performed recursively at each node. The algorithm works 

by: 

1. Traversing the left sub-tree. 

2. Visiting the root node, and finally   

3. Traversing the right sub-tree. 

- Example 

 
- The pre-order traversal of the tree is given as B,A,C . Left sub-tree 

first, the root node next, and then the right sub-tree. 

- Recursive Function 

Void inorder (node * T) /* address of the root node is passed in T */ 

{ 

                      if (T! = NULL) 

                       { 

                              inorder( T -->left); 

                              printf(“\n%d, T --> data); 

                              inorder( T -->right); 

 

                       } 

} 

 

3. Post-order Traversal 

- To traverse a non-empty binary tree in post-order, the following 

operations are performed recursively at each node. The algorithm works 

by: 

                    1. Traversing the left sub-tree. 

                    2. Traversing the right sub-tree, and finally 

                    3. Visiting the root node. 

- Example 

 



- The pre-order traversal of the tree is given as B,C,A . Left sub-tree 

first, the right sub-tree and then the root node . 

- Recursive Function 

Void postorder (node * T) /* address of the root node is passed in T 

*/ 

{ 

                      if (T! = NULL) 

                       { 

                              postorder( T -->left); 

                              postorder( T -->right); 

                              printf(“\n%d, T --> data); 

 

 

                       } 

} 

________________________________________________________________ 

Q.4 

(a) State advantages of Linked List over arrays. Explain different 

      applications of Linked List.                                                                     (10) 

 Linked list over arrays 

- Both arrays and linked lists are a linear collection of data elements. But 

unlike an array, a linked list does not store its nodes in consecutive 

memory locations. 

- Another point of difference between an array and a linked list is that a 

linked list does not allow random access of data 

- Nodes in a linked list can be accessed only in a sequential manner. 

- But like an array, insertions and deletions can be done at any point in 

the list in a constant time. 

- Another advantage of a linked list over an array is that we can add any 

number of elements in the list 

- linked lists provide an efficient way of storing related data and 

performing basic operations such as insertion, deletion, and updation of 

information at the cost of extra space required for storing the address of 

next nodes. 

         Application of Linked list 

- Linked lists can be used to represent polynomials and the different 

operations that can be performed on them 

- we will see how polynomials are represented in the memory using 

linked lists. 

 



            1. Polynomial representation 

- Let us see how a polynomial is represented in the memory using a 

linked list. 

- Consider a polynomial 6x3 + 9x2 + 7x + 1. . Every individual term in 

a polynomial consists of two parts, a coefficient and a power. 

- Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, 

and 0 as their powers respectively. 

- Every term of a polynomial can be represented as a node of the 

linked list. Figure shows the linked representation of the terms of the 

above polynomial. 

                  

              Figure.  Linked representation of a polynomial 

- Now that we know how polynomials are represented using nodes of a 

linked list. 

 

(b)  Write a program in ‘C’ to implement Circular queue using arrays. (10) 

 Program 

#include<stdio.h>  

#include<conio.h>  

#define size 5  

int q[size],front=-1,rear=-1,i,element;  

void insert(int ele);  

int del();  

void disp();  

 

void main()  

{   

int ch,ele;   

clrscr();  

printf("\t ***** Main Menu *****"); 

printf("\n 1. insert \n2.delete \n3.display \n4.Exit\n");  

do  

{  

printf("\n Enter your choice: \n \n");  

scanf("%d",&ch);  

switch(ch)  

{  

case 1:printf("\n Enter Element to Insert \n ");    



scanf("%d",&ele);    

insert(ele);    

disp();    

break; 

 

case 2:ele=del();    

scanf("\n %d is the deleted element \n ",ele);    

disp();    

break; 

 

case 3:disp();    

break;   

 

case 4:break;   

default:printf(" \n Invalid Statement \n");  

}  

}  

while(ch!=4); getch();  

}  

 

void insert(int ele)  

{  

if(front==-1 && rear==-1)  

{  

front=rear=0;    q[rear]=ele;  

}  

else if((rear+1)%size==front)  

{  

printf("\n  Queue is Full \n");  

}  

else  

{  

rear=(rear+1)%size;  

q[rear]=ele;  

}  

}  

 

int del() 

{  

if(rear==-1 && front==-1)  

{  

printf("\n Queue is Empty \n");  

}  



else if(rear==front)  

{  

rear=-1;     

front=-1;     

printf("\n Queue is Empty \n");  

}  

else  

{  

element=q[front];    front=(front+1)%size;  

}  

return element;  

}  

 

void disp()  

{  

if(rear==-1 && front==-1)  

{  

printf("\n Queue is Empty \n");  

}  

else  

{  

for(i=front;i<(rear+1)%size;i++)  

{       

printf("\t %d",q[i]);  

}  

} 

} 

OUTPUT: 

 ***** Main Menu ***** 

1. insert  

2.delete  

3.display  

4.Exit 

 Enter your choice: 1 

Enter Element to Insert: 23 

Enter your choice: 1 

Enter Element to Insert: 45  

 



 

Q.5 

(a) Write a program to implement singly Linked List. Provide the following 

      operations: 

      i) Insert a node at the specified location. 

      ii) Delete a node from end 

      iii) Display the list                                                                                     (10) 

 PROGRAM 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<conio.h> 

void InsertAtPosition(int value,int position); 

void RemoveAtEnd(); 

void display(); 

int CheckEmpty(); 

 

struct Node{ 

int data; 

struct Node *next; 

}* head=NULL; 

 

int main() 

{ 

int value,choice; 

char c; 

do{ 

printf("Enter\n1-Insert\n2-Remove\n3-Display\n"); 

printf(“Enter your choice”); 

scanf("%d",&choice); 

switch(choice) 

{ 

 

Enter your choice: 2 

23 is the deleted element 

Enter your choice: 3 

45 

Enter your choice: 4 

 



case 1: 

{ 

int x; 

printf("Enter \n1-Insert at Position\n"); 

scanf("%d",&x); 

printf("Enter Value to be Inserted\n"); 

scanf("%d",&value); 

switch(x) 

{ 

case 1: 

{ 

int position; 

printf("Enter position to insert a value(counted from 0)\n"); 

scanf("%d",&position); 

InsertAtPosition(value,position); 

break; 

} 

default : 

{ 

printf("Enter Valid Choice\n"); 

break; 

} 

} 

break; 

} 

 

case 2: 

{ 

int x; 

printf("Enter \n1-Delete At End\ n"); 

scanf("%d",&x); 

switch(x) 

{ 

case 1: 

{ 

RemoveAtEnd(); 

break; 

} 

default : 

{ 

printf("Enter Valid Choice\n"); 

break; 

} 



} 

break; 

} 

 

case 3: 

{ 

display(); 

break; 

} 

default: 

{ 

printf("Enter Valid Choice\n"); 

break; 

} 

} 

printf("Enter 'Y' to continue else any letter\n"); 

fflush(stdin); 

c=getche(); 

printf("\n"); 

}while(c=='Y' || c=='y'); 

return(0); 

} 

 

void InsertAtPosition(int value,int position){ 

struct Node *newNumber,*temp; 

int count,flag; 

newNumber = (struct Node*)malloc(sizeof(struct Node)); 

newNumber->data = value; 

temp=head; 

flag=CheckEmpty(); 

if(flag==1) 

{ 

int flag1=0; 

count=0; 

while(temp!=NULL) 

{ 

if(count==position-1) 

{ 

flag1=1; 

newNumber->next=temp->next; 

temp->next=newNumber; 

} 

 



else 

{ 

temp=temp->next; 

} 

count++; 

} 

if(flag1==0) 

{ 

printf("Entered Position Not available\n"); 

} 

else 

{ 

printf("Given number %d is inserted at position %d 

successfully\n",value,position); 

} 

} 

else 

{ 

printf("List is Empty\n"); 

} 

} 

 

void RemoveAtEnd() 

{ 

int flag=CheckEmpty(); 

if(flag==1) 

{ 

if(head->next==NULL) 

{ 

head=NULL; 

} 

else 

{ 

struct Node *temp=head,*temp1; 

while(temp->next!=NULL) 

{ 

temp1=temp; 

temp=temp->next; 

} 

temp1->next=NULL; 

free(temp); 

} 

} 



else 

{ 

printf("List Empty.Try again!\n"); 

} 

} 

void display() 

{ 

int flag=CheckEmpty(); 

if(flag==1) 

{ 

struct Node *temp; 

temp=head; 

while(temp->next!=NULL) 

{ 

printf("%d->",temp->data); 

temp=temp->next; 

} 

printf("%d",temp->data); 

printf("\n"); 

} 

else 

{ 

printf("No List Available\n"); 

} 

} 

 

int CheckEmpty() 

{ 

if(head==NULL) 

return 0; 

else 

return 1; 

} 

OUTPUT: 

1.Insert  

2.Remove 

3.Display 

Enter your choice:1 

Enter 

1-Insert at position  

Enter value to be inserted 

45 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enter position to insert a value(counted from 0) 

2 

Given number 45 is inserted at position 2 successfully 

Enter ‘Y’ to continue else any letter 

Y 

Enter 

1.Insert  

2.Remove 

3.Display 

Enter your choice:3 

45 

Enter ‘Y’ to continue else any letter 

Y 

Enter 

1.Insert  

2.Remove 

3.Display 

Enter your choice:2 

Enter  

1-Delete at end 

1 

Deleted successfully 

Enter ‘Y’ to continue else any letter 
 



 (b) Insert the following elements in AVL tree: 44, 17, 32, 78, 50, 88, 48, 62,  

      54. Explain different rotation that can be used.                                    (10) 

  
 

Sr.

no 

Data 

to be 

insert 

Tree after insertion Tree after Rotation 

1 44 

 

 

2 17,32 

                                                                     

 

3 78 

 

 



4 50 

 

 

5 88 

 

 

6 48 

 

 



7 62 

 

 

8 54 

 

 

 

Q.6 Explain the following (any two)                                                             (20) 

(a) splay Tree and Trie 

     Splay Tree 

- A splay tree consists of a binary tree, with no additional fields. 

- When a node in a splay tree is accessed, it is rotated or ‘splayed’ to the 

root, thereby changing the structure of the tree. 

- Since the most frequently accessed node is always moved closer to the 

starting point of the search (or the root node), these nodes are therefore 

located faster. 

- A simple idea behind it is that if an element is accessed, it is likely that it 

will be accessed again. 

- In a splay tree, operations such as insertion, search, and deletion are 

combined with one basic operation called splaying. 



- Splaying the tree for a particular node rearranges the tree to place that node 

at the root. 

- A technique to do this is to first perform a standard binary tree search for 

that node and then use rotations in a specific order to bring the node on top. 

Advantages and Disadvantages of Splay Trees 

- A splay tree gives good performance for search, insertion, and deletion 

operations. 

- This advantage centres on the fact that the splay tree is a self-balancing and 

a self-optimizing data structure. 

- Splay trees are considerably simpler to implement. 

- Splay trees minimize memory requirements as they do not store any book-

keeping data. 

- Unlike other types of self-balancing trees, splay trees provide good 

performance. 

    

     Trie 

      - A trie is a tree-like data structure whose nodes store the letters of an alphabet.  

        by structuring the nodes in a particular way, words and strings can be 

        retrieved from the structure by traversing down a branch path of the tree.  

      - A trie is a tree of degree P ≥ 2.  

      - Tries re useful for sorting words as a string of characters.  

      - In a trie, each path from the root to a leaf corresponds to one word.  

      - Root node is always null.  

      - To avoid confusion between words like THE and THEN, a special end  

         marker symbol ‘\0’ is added at the end of each word.  

      - Below fig shows the trie of the following words (THE, THEN, TIN, SIN, 

           THIN, SING)  

 
 

      - Most nodes of a trie has at most 27 children one for each letter   

        and for '\0'  

      - Most nodes will have fewer than 27 children.  



      - A leaf node reached by an edge labelled '\0' cannot have any children and  

        it need not be there. 

        

(b) Graph Traversal Techniques 

 There are two standard methods of graph traversal. 

1. Breadth-first search 

- Breadth-first search (BFS) is a graph search algorithm that begins 

at the root node and explores all the neighbouring nodes. 

- Then for each of those nearest nodes, the algorithm  explores their 

unexplored neighbour nodes, and so on, until it finds the goal. 

- That is, we start examining the node A and then all the neighbours 

of A are examined. 

Algorithm for Breadth-first search 

- Step 1: SET STATUS=1(ready state) for each node in G 

- Step 2: Enqueue the starting node A and set its STATUS=2 

(waiting state)  

- Step 3: Repeat Steps4and5until QUEUE is empty  

- Step 4: Dequeueanode N. Process it and set its STATUS=3 

(processed state).  

- Step 5: Enqueue all the neighbours of N that are in the ready state 

(whose STATUS=1) and set their STATUS=2 (waiting state) 

[END OF LOOP]  

- Step 6: EXIT 

Applications of Breadth-First Search Algorithm 

-  Breadth-first search can be used to solve many problems such as: 

-  Finding all connected components in a graph G.  

-  Finding all nodes within an individual connected component.  

- Finding the shortest path between two nodes, u and v, of an 

unweighted graph.  

- Finding the shortest path between two nodes, u and v, of a 

weighted graph. 

              2. Depth-first Search  

- The depth-first search algorithm (Fig. 13.22) progresses by 

expanding the starting node of G and then going deeper and deeper 

until the goal node is found, or until a node that has no children is 

encountered. 

- When a dead-end is reached, the algorithm backtracks, returning to 

the most recent node that has not been completely explored. 

- depth-first search begins at a starting node A which becomes the 

current node. 

- Then, it examines each node N along a path P which begins at A. 



- That is, we process a neighbour of A, then a neighbour of 

neighbour of A, and so on. 

Algorithm for depth-first search 

- Step 1: SET STATUS=1(ready state) for each node in G  

- Step 2: Push the starting nodeAon the stack and set its 

STATUS=2(waiting state)  

- Step 3: Repeat Steps4and5until STACK is empty 

-  Step 4: Pop the top node N. Process it and set its 

STATUS=3(processed state)  

- Step 5: Push on the stack all the neighbours ofNthat are in the 

ready state (whose STATUS=1) and set their STATUS=2(waiting 

state) [END OF LOOP]  

- Step 6: EXIT 

 

(c) Huffman Encoding 

 Huffman Code:  

- Huffman code is an application of binary trees with minimum weighted 

external path length is to obtain an optimal set for messages M1, M2, …Mn - 

Message is converted into a binary string.  

- Huffman code is used in encoding that is encrypting or compressing the text 

in the WSSS communication system.  

- It use patterns of zeros and ones in communication system these are used at 

sending and receiving end.  

- suppose there are n standard message M1, M2, ……Mn. Then the frequency 

of each message is considered, that is message with highest frequency is given 

priority for the encoding.  

- The tree is called encoding tree and is present at the sending end. - The 

decoding tree is present at the receiving end which decodes the string to get 

corresponding message.  

- The cost of decoding is directly proportional to the number of bits in the 

transmitted code is equal to distance of external node from the root in the tree. 

     Example  

  

Symbol  A  B  C  D  E  

Frequency  24  12  10  8  8  

  

Arrange the message in ascending order according to their frequency  

 
Merge two minimum frequency message 



 
                                              Rearrange in ascending order 

 
                                    Merge two minimum frequency message 

 
                                           Rearrange in ascending order 

 

                                       Merge two minimum frequency message 

 
                                         Again Rearrange in ascending order 



 
                                Merge two minimum frequency message 

  
Huffman code  

A = 0  

B = 111  

C = 110  

               D= 100  

               E = 101   

 

(d) Double Ended Queue 

  
- It is also known as a head-tail linked list because elements can be added to or 

removed from either the front (head) or the back (tail) end. 

- However, no element can be added and deleted from the middle 

- In a deue, two pointers are maintained, LEFT and RIGHT, which point to 

either endof the deque. 

- They include, 

Input restricted deque – In  this dequeue, insertions can be done only at 

one of the ends, while deletions can be done from both ends. 

The following operations are possible in an input restricted dequeues. 

      i) Insertion of an element at the rear end and 

      ii)Deletion of an element from front end 

      iii)Deletion of an element from rear end 



 

Output restricted deque- In this dequeue, deletions can be done only at one 

of the ends,while insertions can be done on both ends. 

     i) Deletion of an element at the front end  

     ii)Insertion of an element from rear end 

     iii)Insertion of an element from rear end 

 

Operations on a dequeue 

i. initialize(): Make the queue empty. 

ii. empty(): Determine if queue is empty. 

iii. full(): Determine if queue is full. 

iv. enqueueF(): Insert at element at the front end of the queue. 

v. enqueueR(): Insert at element at the rear end of the queue. 

vi. dequeueF(): Delete the front end 

vii. dequeueR(): Delete the rear end 

viii. print(): print elements of the queue. 

- There are various methods to implement a dequeue. 

- Using a circular array 

- Using a linked list 

- Using a cicular linked list 

- Using a doubly linked list 

- Using a doubly cirular linked list 

   29  37 45 54 63   

     0          1          2       left = 3       4           5           6    right = 7       8            9 

     0     right = 1    2             3           4           5           6       left = 7       8         9 

Fig. Double-ended queues 

 

********** 

42  56      63 27 18 


